Predict, Preferences

James A. Harter Alexander V. Litvinov

LexTech, Inc.

8285 Rhine Way

Centerville, OH 45458

User Preferences

Preferences Are User Selected Options to Control the Life Prediction Process and Output Format

There Are Seven Preference Tabs

- Growth Increment
- Output Intervals
- Output Options
- Propagation Limits
- Transition Options
- Lug Boundary Conditions
- Crack Closure Factor

Growth Increment

(Vroman Increment)

Predict Function Preferences				
Growth Increment Output Intervals Output Options Prop 4				
AFGROW uses the Vroman integration technique when a blocked spectrum is input. To minimize an error in predicted crack propagation times it is not recomended for Max Growth Increment value to exceed 10%.				
Select Max Growth Increment (%): 5				
Cycle by Cycle Spectrum calculation				
Cycle by Cycle Beta and Spectrum calculation				
OK Cancel Save Default				

3 choices:

- Max Growth Increment (0.25 15%)
- Cycle by Cycle Spectrum Calculation (0.25 5%)
- Cycle by Cycle Beta and Spectrum Calculation

Variation in Kmax

Due to the Vroman Increment

Comparison of Growth Increments

Output Intervals

Print Output Data at:

- Specified Crack Growth Increments
- Specified Spectrum Cyclic Increments
- After Each Spectrum Stress Level

Display Lifetime in Hours

• Input Hours/Pass

Predict Function Preferences
Growth Increment Output Intervals Output Options Prot
Print Output Data at
Specified Crack Growth Increment:
Specified Spectrum Cyclic Increment
C After each Spectrum Stress Level
Crack Growth 0.01
Display Lifetime in Hours

Output Options

Print Output to:

- Screen
- Data File (Text Output)
- Plot File (Single Header)
- XML Data File

Default File Names Are Automatically Overwritten

Predict Function Preferences
Growth Increment Output Intervals Output Options Prop
Print Output to
Plot File XML Data File
Data File Name
Plot File Name
afgr_plot .pl2 Browse
XML Data File Name
afgr_output .xml Browse
OK Cancel Save Default

What is the Purpose of the XML File?

XML file format uses a tagging system that identifies the type of data being stored. This allows the information to be used in many different ways that can be very useful:

- Identifies the data in a standardized manner
- The XML format is widely used (i.e. Microsoft Word, Explorer, etc.)
- It is very easy to insert new items in the file as new capabilities are added
- Facilitates post-processing of the data
- XML output files can also be used as AFGROW input files

Propagation Limits

Stop Crack Propagation at:

- Crack Length (C-Dimension)
- Cycle Count
- 'Kmax' Failure Criteria
- User-Defined 'Kmax'
- 'Net Section Yield' Failure Criteria
- Part Through Crack Transition

Stop Crack Propagation at: Crack Length Cycle Count V 'Kmax' Failure Criteria	
Crack Length Cycle Count V 'Kmax' Failure Criteria	
Cycle Count V 'Kmax' Failure Criteria	
📝 'Kmax' Failure Criteria	
User-Defined 'Kmax'	
📝 'Net Section Yield' Failure Criter	ria
Part Through Crack Transition	
Number of times the spectrum will b	be repeated
Spectrum Reps (Max: 99999	9999): 9999999
Minimum crack growth after one pa	ass of the spectrum
Minimum crack gro	owth: 1e-013
OK Cancel	Save Default

Default – 'Kmax' and 'Net Section Yield'

Propagation Limits

Number of times the spectrum will be repeated

- 999,999 (Default)
- 9,999,999 (Max)

Minimum crack growth after one pass

- 1e-013 inch/cycle (English) default
- 2.54e-015 m/cycle (Metric) default

Transition Options

Transition Criteria:

Thickness Penetration (%)
95% (Default)

Option to disable transition based on Pxx criterion

• Kmax > Kle (in the A-direction)

If transition is predicted due to the Kmax criteria in the A-direction, AFGROW automatically transitions to a through crack and re-checks Kmax in the C-direction

Predict Function Pre	eferences	0.00 10	
Output Options Pr	opagation Limits	Transition Option	ns Lug Bc + +
- Transition to a	Through Crack at -	-	
Thickne	ss penetration %		
E	nt <mark>er thickness per</mark>	etration % value:	95
	Disable Pxx in Thro	ough Crack Transi	tion
C K max in effective	A direction greate fracture toughnes	er than or equal to s (Kle)	the
ОК	Cancel	Save	Default

Lug Boundary Conditions

Boundary Condition Options:

- Bearing (Cosine Stress Distribution)
- Spring (Pin/Plate Modulus Ratio = 3)
- Combination (Based on a/t)

Predict Function Preferences
Transition Options Lug Boundary Conditions
Default lug pin boundary conditions may be adjusted (not recommended for novice users)
Boundary Conditions
Bearing (cosine stress distribution)
Spring (pin/plate modulus ratio = 3)
Combined (based on a/t ratio)
This option is only used for part-through cracks. If selected for a through crack, the Spring BC will be used.
Bearing: 70%
Linear interpolation is used to transition from Bearing to Spring BCs.
OK Cancel Save Default

Bearing and Spring Pin Load FEM Boundary Conditions Were Used to Develop the AFGROW Lug Solutions

Lug Boundary Condition Help Info

The stress intensity solution for the lug geometry is a tabular look-up solution that was generated using the p-version finite element program, StressCheck. Verification testing (performed at Purdue University on aluminum lugs with steel fasteners) indicated that the Spring BC matched the results for through-the-thickness cracks, and the Bearing BC worked best for most corner cracks. The Bearing B.C. allows the hole to deform. This may explain the agreement with the corner cracked tests performed at Purdue, since the average pin clearance was 0.002 inches. While much more work is required to be certain, the AFGROW default case has been set to begin transition from the Bearing to the Spring BC at 70% of the specimen thickness. For through-the-thickness cracks, the default condition is to use the Spring BC.

There is a significant difference between the two BCs. No data were available for pin/plate materials other than the testing performed at Purdue. It is left to the user to determine which BC is more appropriate for any given life prediction. If the user is confident of a neat pin fit, the Spring BC may be a good choice to give a longer predicted life. However, as noted above, this flexibility is intended for experienced users.

Crack Closure Factor

Crack Closure Factor (βr):

Used by NASGRO to lower the betavalue for part-through cracks at any free surface to attempt to make better predictions of the crack shape

$$K = \sigma \sqrt{\pi \ crack \ Length} \ \beta \ \beta_r$$

if R = 0 *then* βr = 0.9
else
 βr = 0.9 + 0.2 R² - 0.1 R⁴

edict Function Pr	eferences		×
Lug Boundary Cor	nditions Crack Clo	osure Factor	<u>.</u>
-Please Select	<u></u>		
Use Cra	ck Closure Factor		