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Stress intensity factor, K, solutions for unsymmetric corner cracks at a hole 
subject to general loading were determined using a hp-version of the finite 
element method (FEM) in conjunction with a mathematical splitting scheme to 
enable efficient, accurate calculations.  In traditional applications of the FEM, 
mesh generation is labor intensive; however, using the splitting scheme, stress 
intensity functions are obtained without explicitly including the crack in the FE 
mesh of the global structure.  By using the hp-version of FEM, a set of 
K-solutions converging exponentially fast to the exact solution is obtained.  The 
crack is analyzed in the local domain with easily generated FE meshes.  All 
structurally significant crack shapes were considered; specifically, crack depth to 
crack length ratios (a/c) of 0.1 - 10.0, crack depth to sheet thickness ratios (a/t) of 
0.10 - 0.99, and hole radius to sheet thickness ratios (r/t) = 0.2 - 10.0. The loading 
conditions were remote tension, remote bending, and pin loading (bearing).  In 
addition, all combinations of a/c, a/t and r/t are analyzed at each side of the hole; 
thus more than 900 thousand solutions were developed with control of the error in 
the computed K solutions.  Calculated relative error is generally much smaller 
than 1% along the entire crack front including the vertex regions.  Laboratory test 
and in-service experience shows fatigue cracks at holes exhibit unsymmetric 
growth; thus, the need for the new solutions is paramount.  Comparisons are made 
to solutions in the open literature.  The new K solutions show the literature 
solutions are in general accurate for all three load conditions; however, for the 
extreme cases of a/c, a/t, and r/t; the literature solutions are in error as much as 50 
percent.  The new K solutions are to be implemented in AFGROW, the USAF 
crack growth analysis code available on the World Wide Web at 
http://fibec.flight.wpafb.af.mil/fibec/afgrow.html. 

 

1 INTRODUCTION 

Mechanically fastened joints, riveted or bolted, offer many options to the designer and have been 
used for centuries to join two or more structural members.  For statically loaded structure, as a 
minimum a good joint design ensures the stress concentration at the fastener hole edge does not 
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exceed the yield strength of the material.  This is also the case for cyclically loaded structure, 
however, now the designer must also satisfy fatigue requirements.  The fatigue problem can be 
attacked in two ways; one, use stress levels below the fatigue limit of the material thus cracks 
never initiate; two, design the structure such that the slow crack growth life of the component is 
greater than its design service goal plus some factor of safety.  For primary aircraft structure, 
excluding landing gear, the second approach is preferred and directed by civilian airworthiness 
authorities and military specifications.  Assuming the simplest crack growth law, Paris law Eqn 
(1), the designer can meet the fatigue life requirements by choosing a material with good fatigue 
properties and designing to keep ∆K in an acceptable range. 

nKC
dN
da ∆=  

da/dN = Crack growth rate 
C,n = Material constants 
∆K = Stress intensity factor range 

The focus of this research effort was to accurately calculate K to add fidelity to the fatigue life 
predictions of mechanically fastened joints.  Specifically, K solutions were calculated for 
unsymmetric corner cracks at a centrally located hole in a finite width sheet subject to tension, 
bending, and bearing as shown in Figure 1. Numerous combinations of a/c, a/t, and r/t are 
analyzed at each side of the hole; specifically, crack depth to crack length ratios (a/c) of 
0.1 - 10.0, crack depth to sheet thickness ratios (a/t) of 0.10 - 0.99, and hole radius to sheet 
thickness ratios (r/t) of 0.2 - 10.0.  More than 907,500 solutions were developed with control of 
the error in all the computed K solutions.  The relative error is generally much smaller than 1% 
along the entire crack fronts up to the vertices. 

2 BACKGROUND 

In-service1, full-scale fatigue test2, and laboratory component/coupon3 fatigue test evidence 
indicates cracks in riveted joints commonly nucleate as corner cracks at the faying surface/rivet 
hole bore intersection.  The exact solution for the stress intensity factor is not known.  The 
pursuit of a numerical estimate for K began over twenty years ago with Smith and Kullgren4 
using the finite element alternating method and Heckmer and Bloom5 as well as Raju and 
Newman6 using the finite element method.  An extensive summary of the numerical simulations 
to estimate K solutions for corner cracked holes has recently been compiled by Bakuckas.7  The 
report documents K solutions calculated by various methods; conventional finite element method 
(FEM), finite element alternating method (FEAM), boundary element method (BEM), and three-
dimensional weight function method (WFM).  The K’s are extracted from the analysis results 
using indirect or direct methods; the former derives K from energy, usually the energy release 
rate and the latter derives K directly from the forces (force method) or displacements (crack 
opening displacement, COD, method) solution.  A more complete discussion on indirect and 
direct methods for calculating K can be found in references [8] and [9]. 

The p-version finite element code, STRIPE,10 developed by the Aeronautical Research Institute 
of Sweden is used in the current investigation.  Recall, in p-version FEA the number of elements 
is kept fixed and convergence is obtained by increasing the order of approximation of the shape 
functions, p, within each element; whereas, in the h-version convergence is obtained by 
increasing the number of elements.  In STRIPE, a combination of the h- and p-version FEA is 
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used to obtain exponential convergence of the stress intensity factor solution by simultaneously 
decreasing the element size (increasing the total number of elements in the model) and increasing 
the p-level.  At present, the maximum p-level available in STRIPE is 15.  For a uniform order of 
approximation, the total number of degrees of freedom per element is11 

)1(3
6

)3)(2)(1( +++++= ppppDoF  

DoF = Total degrees of freedom 
p = Polynomial order of approximation  

 

For cracks in bodies of finite dimension, usually the crack front intersects a geometric boundary.  
The point of intersection is called the vertex.  The K-variation is very complicated near a vertex 
for crack fronts intersecting perpendicular to a stress free surface (as in our case).  In fact, the 
gradient along the crack front in K is infinitely large at the vertex as described in section 3.2 and 
hence difficult to capture in a numerical analysis.  This problem in our case is completely 
resolved by employing a strongly graded mesh not only in the neighborhood of the crack front, 
but also along the crack front towards the two vertices. 

3 MODELING THEORY AND IMPLEMENTATION 

3.1 K-EXTRACTION FROM FEA RESULTS 

We briefly review our method for reliable extraction of stress intensity factors for general 
smooth edges in 3D domains.  Consider a smooth edge, γ, in Figure 2.  The angle, ω is assumed 
to be constant.  In the present paper, we are interested in the special case when ω = 2π and γ has 
a part-elliptical shape.  Denote by r, the distance (short) from the edge to a point, and θ 
(-ω/2 ≤ θ ≤ ω/2) the polar angle.  The displacements, u can be written in the form (excluding 
exceptional angles ω), 

∑
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where KI (x3), KII (x3), and KIII (x3), are the mode I, mode II, and mode III stress intensity 
functions, where for example KI is defined by,  
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where σ2(r, θ, x3) is the normal stress in the local (1,2,3) system.  The exponents λα (α = I, II, or 
III in the following) depend only on the local geometry and local boundary conditions (faces are 
traction free in our case).  The functions ΨΨΨΨα in Eqn. (3) are, 

 
















=

)3

2

1

,(
),(
),(

),(

αα

αα

αα

αα

λθ
λθ
λθ

λθ
Ψ
Ψ
Ψ

Ψ  

or 

(2) 

 (3) 

 (4) 

 (5) 



 4

 
















−+++

−−+−
=

))2sin(()sin())1((
0

))2cos(()cos())1((
),(

θλλθλλκ

θλλθλλκ
βλθ

IIIII

IIIII

III

Q

Q
Ψ  

 
















−+++−

−−+−
=

))2cos(()cos())1(((
0

))2sin(()sin())1((
),(

θλλθλλκ

θλλθλλκ
βλθ

IIIIIIIIII

IIIIIIIIII

IIIIII

Q

Q
Ψ  

 
















=
0

)sin(
0

),( θλβλθ IIIIIIIIIIIIΨ  

where κ = 3-4ν, ν is Poisson’s ratio, G the shear modulus, and 
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Table 1 shows λα-values for two technically important ω-values. 

Table 1 Edge eigenvalues, λλλλαααα 

α ω=3π/2 ω=2π 
I 0.54448374 0.50000000 
II 0.90852919 0.50000000 
III 0.66666667 0.50000000 

For smooth edges, the edge intensity functions Kα(x3) are analytic on open intervals sk ≤ x3 ≤ sk+1.  
Hence, we approximate the edge intensity functions Kα with the polynomials 
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where nkα are unknown coefficients, p is the polynomial order of the finite element trial 
functions, and Pn the Legendre polynomials. 

Figure 3 illustrates a domain Ωe used for extraction of the coefficients nkα .  The extraction 
domain has three cylindrical surfaces with circular cross sections (ρ2 > ρ1 > ε) perpendicular to 
the edge considered.  We denote by Ωe, the cylinder with inner radius ε and outer radius ρ2.  The 
surface of Ωe is denoted Γe.  The two outer cylindrical surfaces are exactly modeled in the finite 
element analysis. 

The coefficients nkα , we calculate by applying the Maxwell-Betti reciprocity theorem, Eqn. (11), 
p+1 times for each value of α. 
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In Eqn. (11), 
)()()(
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iii xtu are the displacements, tractions, and volume force density, 
respectively, for a loading system having identical edge stress intensity functions Kα as the 
original load system.  The fields 
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iii ΧTU , 0 ≤ n ≤ p, are auxiliary solutions used to 
calculate the coefficients nkα . 

As auxiliary displacement solutions, we use 
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with ΨΨΨΨα from Eqn. (6) to (8) and f(r) being the cut-off function 
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The set of functions )()( sU n
i , which have a strong singularity at the edge, have desirable 

orthogonality properties with respect to 
)( e

iu and ui correspond to identical edge stress intensity 
functions Kα. 

Substituting ui from Eqn. (3) and )(n
iU from Eqn. (12) into the left hand side of Eqn. (11), and 

shrinking ε→0, the unknown coefficient nkα  is obtained as 
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In Eqn. (14), Cn is a material dependent constant.  Displacements obtained from the finite 
element solution are substituted for 

)( e

iu in Eqn. (14).  The extraction functions )(n
iU  and the 

corresponding tractions )(n
iT vanish on the outer surface (radius ρ2) of the extraction domain Ωe. 

(Figure 3) because of the cylindrical cross-section and the cut-off functions Eqn. (13) used.  The 
accuracy of the calculated stress intensity factors thus will mainly depend on a weighted average 
of the finite element solution inside the extraction domain.  This gives the very fast convergence, 
with increasing p to the exact solution. 

3.2 SOLUTION BEHAVIOR CLOSE TO VERTICES 

The stress intensity functions show a complex behavior near the two vertices where the crack 
fronts intersect with the traction free surfaces (Figure 7 - Figure 13). The solution behavior in 
these regions is important since the maximum values of the stress intensity functions are to be 
found there.  The mathematical theory for the vertex behavior is known in general form. A few 
details are here given from the theory and we exemplify that our numerical results are very 
accurate along the entire crack front, i.e. also arbitrary close to the vertices, and, in agreement 
with the basic mathematical findings. An analytical expression, derived from the mathematical 
theory, describes the near-vertex behavior including the region of maximum stress intensity. The 
simplicity of this expression makes it possible to store accurate stress intensity factor 
distributions in very compact form. 

In spherical coordinates (ρ,ω,ϕ), the Cartesian displacements (u,v,w) near a vertex, for a straight  
crack front, can be written,12  
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where the scalars )( jB are so-called vertex intensity factors.  In case of curved crack fronts, the 
expansion (15) has to be augmented with higher order terms. However, in all the cases studied 
here the two leading terms in Eqn. (15) stay the same. The functions )j(

iΘ  have the standard 
square root singularity for angles (ω,ϕ) corresponding to points close to the crack front.13  For 
simplicity, we discuss only the pure mode I case (bending and traction loading). For a Poisson's 
ratio of 0.3 and a quarter elliptical crack, we have the universal constants Λ1 = 0.54782, 
Λ2 = 1.21826 which were calculated using the STRIPE-code and a spherical mesh at the vertex. 
From the definition of the stress intensity factor )(2lim

0
rrK

rI σπ
→

= , r being the distance to the 

crack front and σ the normal stress, we get, using Eqn. (15), that the stress intensity function near 
the vertex must satisfy,  
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where s is a coordinate along the crack front. S1 and S2 depends on (a/c, a/t, r/t) and the type of 
loading.  The stress intensity functions KI are always zero at the vertex (s=0) since Λ1 > 1/2.  The 
very steep gradient in KI close to a vertex is in our case due to the fact that Λ1 ≈ 1/2.  The 
parameters S1 and S2 can be determined from a fit to calculated numerical data close to the 
vertex.  We see from Eqn. (16) that for small s, 2/11/)( −ΛssKI is a linear function of 12 Λ−Λs .  The 
analytical expression, Eqn. (16) can be used to accurately calculate KI arbitrary close to the 
vertex, or the maximum value of KI near the vertex.  The point s* where the stress intensity 
function is maximum is, for S2 < 0 obtained from Eqn. (16), neglecting higher order terms, as,  
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The corresponding stress intensity factor KI is obtained after inserting s = s* into Eqn. (16).  The 
two scalars S1 and S2, together with Eqns. (16) and (17) and the universal constants Λj, carry 
much information and are stored for each of the crack configurations analyzed. 

3.3 SPLITTING SCHEME 

A mathematical splitting method was used to efficiently and reliably calculate the 907,500 stress 
intensity factor solutions for unsymmetric part-elliptical cracks growing from a hole.  A brief 
overview is given here; however, for a complete discussion of the mathematical theory, see 
references [14-16].  In the splitting method, the 3D fracture mechanics problem is split into three 
sub-problems, a complex multi-site cracking scenario is shown in Figure 4 although the current 
investigation is only considering two cracks at one hole, with the solution obtained by 
superposition of the sub-problems. 

a. Global Crack Free Problem: The solution of the global crack free problem, see 
Figure 5, is )0(

GU and the only result required from the finite element analysis 
is the stress distributions on the surfaces where the cracks are to be located.  
Thus, this sub-problem is independent of the number and size of cracks under 
consideration. 

b. A Set of M Local Problems: A local model is developed for each a/c and c/r 
to be analyzed (in our case, 275 local models where used to derive the 
907,500 solutions).  The applied load consists of L different normalized crack 
surface tractions with the solutions denoted as 
{ }LlMmU lm

L �� ,2,1,2,1),( == .  The local models contain a single crack.  
By making the local models large in the thickness direction, only one FE-
analysis is needed independently of the a/t ratio of interest.  Figure 6 shows a 
very small part of a local mesh, designed for our hp-version of the FE method, 
for parameters a/c = 0.8, c/r = 0.125.  Close to the crack front another five 
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cylindrical layers of elements are introduced which are not visible in the 
figure.  So-called blended mapping is used in the analysis to describe the exact 
shape of the crack and the cylindrical hole surface.  The results required from 
the local models are the tractions and displacements on an arbitrarily selected 
surface, Γi (dashed line in Figure 4) which encloses the entire crack in 
addition to the stress intensity functions KI(s), KII(s), and KIII(s) for all the 
crack face loadings. 

c. A Set of Global Crack Free Problems: The global model in a. is analyzed with 
prescribed jumps in the tractions and displacements at the surfaces Γi used in 
the local problems.  Thus, the output from the local problems is input to the 
load calculations in the global models.  The solutions are denoted as 
{ }LlMmU lm

G �� ,2,1,2,1),( == . 

Solution of complex, 3D fracture mechanics problems are obtained by proper superposition of 
sub-problems a-c.  The approximate displacement solution, U to the exact 3D solution, U is 
written as17 
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where α(m,l) are scaling factors determined by solving a small set of linear equations. Thus, with 
the known )0(

GU , ),( lm
GU , and ),( lm

LU , the solution, U can be calculated with virtually no 
computational cost/crack configuration.  This made it possible to derive almost one million 
basically error free K-solutions for the three loading cases.  The computational efficiency of the 
strategy devised makes it feasible to use the calculated stress intensity data in Monte Carlo type 
studies of 3D multiple-site fatigue crack growth.17  If global geometric non-linearity is 
significant for the structure being analyzed, sub-problem a. is solved as a fully three-dimensional 
non-linear problem. 

4 RESULTS AND DISCUSSION 

As discussed above, two finite element models, global and local, with ν = 0.3 are used to 
calculate the stress intensity functions for each crack geometry.  The global model, shown in 
Figure 5, is quite large with 2b = 2h = 200r = 400 units where b and h are the half width and 
height, respectively.  The hole radius is 2.0 units; thus, r/b = r/h = 0.01 resulting in negligible 
finite width/height effects for all crack lengths considered.  The thickness, t, can easily be scaled 
to obtain K solutions for various r/t ratios.  Blended function mapping is used to ensure the hole 
has an exact cylindrical surface and the crack front has an exact elliptical shape, see Figure 6.18  
In the z-direction, thickness direction, four layers of elements are used with relative thickness of 
1, 7, 49, and 343 units, respectively.  The mesh is designed for the hp-version of the finite 
element method; thus, seven elements are used along the crack front with relative lengths of 1, 7, 
49, 343, 49, 7, and 1 unit.  By using this highly graded mesh, the strong variation of the stress 
intensity function close to the crack vertices are captured with high accuracy.  The K variation 
along the crack front is given in the form of piecewise polynomials as described in section 3.1.  
Close to the vertices, an analytical expression based on the mathematical expansion, Eqn. (16), 
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of K close to the vertex is used (section 3.2).  Incidentally, the highly graded mesh was designed 
to accurately calculate K’s for cracks that have nearly penetrated the back free surface, a/t = 0.95 
and 0.99; however, this same mesh design also yields K solutions of the same accuracy for very 
shallow cracks, a/c < 0.2.  These low aspect ratio solutions will be most useful in fatigue life 
prediction for bending dominant problems and corrosion/fatigue where shallow surface corrosion 
damage can begin to propagate in the cycle domain although damage initiated in the time 
domain. 

The global model has 576 elements resulting in over 70,000 DoF at p = 6.  The global mesh is 
overly refined for all of the crack shapes considered except when a/t = 0.95 and 0.99 where 
careful mesh refinement in the ligament between the crack depth and free surface is required.  
The local models contains approximately 1000 elements giving 140,000 DoF at p = 6.  
Exponential convergence of the finite element solution is possible when using the hp-version as 
seen in Figure 7 where convergence is obtained already at p = 3 for 2φ/π ≤ 0.9.  Higher p-levels 
are required for 2φ/π > 0.9 due to the finite thickness effect19 and large stress gradient at the hole 
edge.  For more extreme crack geometries, the most extreme case being shown in Figure 8, 
higher p-levels are required than for all the other solutions.  In fact, the error for lower p-levels 
could be increased drastically by using more than (p-1)2 terms in Eqn. (18).  However, we have 
had no difficulties in obtaining very accurate solutions using the model presented in section 3 
and solutions for polynomial order p=6.  Although error is much larger for small p, the accuracy 
of the p = 6 solution is still less than 0.5% as are all the other solutions. 

Stress intensity factor solutions derived in the past using FEA or FEAM have typically used a 
quarter plate model assuming two symmetry planes, yz-plane at x = 0 and xz-plane at y = 0 in 
Figure 5, to reduce the number of degrees of freedom in the model thereby reducing the solution 
time.  In this effort, no planes of symmetry are employed; thus, K’s for each crack configuration, 
one or two cracks at the hole edge, are explicitly calculated without the need for the well-known 
Shah correction factor for converting K’s for one crack to two cracks at a hole and vice versa.20  
The results of the Bakuckas round-robin are shown in Figure 9 where the solid lines indicate the 
upper and lower bounds of all solutions and ±3% deviation from the average solution.  Two 
STRIPE analyses were conducted, one modelling the crack in an infinite plate (open squares) 
and the other using the same plate dimensions as that used by Bakuckas (open circles).  Both of 
our analyses used a p-level of 6 to obtain the converged solution with error control.  The 5% 
maximum difference between our solutions illustrate the well-known finite height/width effect.  
For this case we also made an independent check, by modelling half the domain explicitly, and 
solving the problem for p = 2, 3, …10, to verify convergence.  Stress intensity functions were 
computed from the basic definition, )(2lim

0
rrK

rI σπ
→

= at a distance of a/5000 from the crack 

front.  Our previous results were confirmed to the 3rd digits accuracy at all control points.  Hence, 
we did not use the splitting method and the technique described for K-extraction described in 
section 3.1, but arrived at (practically) identical results.  Therefore, we can guarantee that the 
STRIPE-solution shown in Figure 9 is the exact solution (with actual resolution) to the boundary 
value problem proposed by Bakuckas.  Thus, of the six methods used and for the given crack 
configuration in the round-robin, the K’s calculated using WFM and DIM where the most 
accurate, less than 2% error compared to the current results.  In addition the FEM, FEAM, and 
BEM are 3% – 6% over conservative for this particular crack configuration.  As will be 
discussed later, the error can be over 50% for some loading conditions and crack configurations. 



 

Comparisons to the Newman/Raju solutions were also made for shallow and deep double cracks 
at a hole as shown in Figure 10 – Figure 12 for tension, bending, and pin loading.  The 
Newman/Raju solutions were used as the reference solution; therefore the error is defined as 

100ErrorPercent
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Since KI is zero at the vertex, we used our peak KI in the vicinity of the vertex to compare to the 
Newman/Raju FEA results at 2φ/π = 0 (c-tip) and 1.0 (a-tip).  The errors for each of the load 
cases at both the c-tip and a-tip are given in Table 1.  For the c-tip, the errors are relatively small, 
although for a/t = 0.8, an 
underestimation of the bending K 
by 9% is alarming.  Interestingly, 
large errors were found away 
from the vertices as well, see 
Figure 11A, where the error is 
approximately 30% in bending.  
The error at the vertices, the locat
general larger for the a-tip than c-tip
Mode I loading.  Interestingly, for w
vertex behavior dictates when the 
NASGRO21 and AFRGOW22 both 
Using accurate K solutions at this lo
in removing the empiricism from th
behavior underestimated in Figure 1
geometry shown in Figure 13.  For
underestimate KI(a).  For all the cra
accurately calculated; thus, accurate
to calculate K’s for part-elliptical cra
refinement between the a-tip and the
the Newman/Raju solutions. 

In reference [23], Newman/Raju fit 
equations from [23] have been imp
added to the original Newman/Ra
included here in order to make a 
significant of the three fitting param
stress ratio, R, and is used to accou
crack front intersects a free surface. 
percent error in Table 1. 

The Newman/Raju solutions are giv
a/t < 0.8 in bending, 0.5 ≤ r/t ≤ 2.0,
limits of applicability.  Extrapolatin
errors in the stress intensity facto
Newman/Raju overestimate KI(c) by
underestimate KI(c) by 91% and ove
not to comment on the quality o

 (19) 
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able 2 Comparisons of Newman/Raju Solutions to STRIPE
10

ion where the crack front intersects the free surface, is in 
.  Figure 9 clearly shows K goes to zero at both vertices for 
edge loading, Mode II and III K’s go to infinity.  The a-tip 

crack will penetrate the thickness of the plate.  Currently, 
use empirically based criteria to determine break-through.  
cation, as presented in Figure 10 - Figure 12, is the first step 
is important crack growth behavior.  Not only is the vertex 
0 - Figure 12, but also exhibits the wrong trend for the crack 
 this case, the Newman/Raju results overestimate KI(c) and 
ck geometries presented here, the Newman/Raju KI(a) is not 
 crack shape development is unlikely.  Using h-version FEA 
cks is always problematic because including sufficient mesh 
 near free surface is difficult.  This appears to be the case for 

the finite element results presented in [6].  In NASGRO, the 
lemented.  In NASGRO, three fitting parameters have been 
ju6 solutions; however, these three parameters were not 
direct comparison between numerical results.  The most 
eters is βR,24 which is an empirically based function of the 
nt for the plane stress to plane strain transition where the 
 For R = 0, βR = 0.9 which results in a 10% reduction in the 

en for parameter range 0.2 ≤ a/c ≤ 2.0, a/t < 1.0 in tension, 
 and (r+c)/b < 0.5.  The other solutions in [7] have similar 
g these results, Newman/Raju for example, can yield large 
r.  For a crack with a/c = 10.0, a/t = 0.99, and r/t = 1.0; 
 14% and underestimate KI(a) by 59% in pure tension, but 
restimate KI(a) by 60% in pure bending.  The intent here is 
f the Newman/Raju solutions since they were landmark 

Location a/t = 0.8 a/t =0.2 a/t = 0.8 a/t =0.2 a/t = 0.8 a/t =0.2
c-tip 3% 3% -9% 1% 2% -0.12%
a-tip -20% -47% -10% -48% -24% -55%

a/c = 0.2, r/t = 1.0
Tension Bending Pin Loading
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achievements at the time of development, but to illustrate the danger in extrapolating K solutions.  
Additional comparisons of crack geometries outside the limits of the Newman/Raju solutions 
indicate the bending solution is most sensitive to the degree at which the geometry is outside the 
limits.  

The most widely used approximation used to convert K solutions derived for one crack at a hole 
to two cracks at a hole (diametrically opposed) and vice versa was derived by Shah nearly 25 
years ago.25  The functional form is simple as seen by Eqn. (20).   
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Using equations presented in [26], an additional correction factor was investigated here; 
however, as the crack length increases, the results diverge from Shah’s.  Eqn. (20) appears to be 
dependent on the crack shape, a/c, and crack size (area), a/t; however, Shah assumed the 
conversion factor was constant along the entire crack front.  In addition, the Shah conversion 
factor is independent of applied load.  Using the data from the current effort, these assumptions 
can be fully investigated considering all crack shapes and load cases, but has yet to be 
completed.  A cursory examination of the validity of Eqn. (20) was conducted for very extreme 
crack configurations, 0.1 ≤ a/c ≤ 10.0, a/t = 0.99, r/t = 1.0.  For the given crack geometries, the 
maximum error in the Shah correction factor when compared to the current results at the c-tip for 
tension, bending, and bearing is 3%, 6%, and 9%, respectively, see Figure 14A.  In practice, the 
Shah correction factor is applied at both the c- and a-tip; thus, errors in the correction factor not 
only affect the fatigue life prediction, but also the flaw shape development.  The maximum error 
at the a-tip for tension, bending and bearing is 5%, 17%, and 7%, respectively, see Figure 14B.  
The K1crack/K2 cracks value from the STRIPE results did not vary significantly along the crack front 
for these “extreme” crack configurations.  Additional comparisons are required to make a more 
general evaluation of the Shah correction factor. 

To evaluate the effect of the second (unsymmetric) crack on the first crack, an influence factor, 
M is defined by Eqn. (21).  M indicates the change in the K at crack 1 when the size (and shape) 
of crack 2 changes.   

 

( )
)(atCrackSymmetrictodueat

)(atCrackcUnsymmetritodueat,
2121

2121
21 ccccK

ccccKccM
=
≠=  

Specifically, the K at crack 1 with an unequal size crack 2 (unsymmetric case) is normalized by 
the K at crack 1 with an equal size crack 2 (symmetric case).  Two cracking scenarios, small and 
large, were considered for this investigation, both subject to pure remote tension.  For the small 

(20) 

(21) 
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crack scenario, one crack size/shape (a/c1 = 0.2, a/t = 0.99, r/t = 1.0) was held constant while the 
diametrically opposed crack size/shape (0.2 ≤ a/c2 ≤ 10.0, a/t = 0.2, r/t = 1.0) varied.  For the 
large crack scenario crack size/shapes were a/c1 = 0.1, a/t = 0.99, r/t = 1.0 and 0.1 ≤ a/c2 ≤ 10.0, 
a/t = 0.99, r/t = 1.0, respectively.  As illustrated by Figure 15, note the expanded scale on the 
ordinate, K(c1) for both the small and large cracks are weakly dependent on the size of the 
second crack, c2.  For example, at c2 /c1 = 0.01, c1 is 100 times larger than c2; however, K(c1) for 
the small crack is less than 2% lower than the case where c1 and c2 are the same size (symmetric 
cracks, c2 /c1 =  1.0).  Similar behavior is seen for the large cracks where K(c1) is 12% lower than 
the case where c1=c2.  Thus, the existence of the second crack is of more importance than the 
size.  For these two cases, the K(c1) variation is also dependent on the crack shape (a/c) and 
crack area (a/t).  As a result, any conversion factors to account for this behavior must be a 
function of both a/c and a/t. 
The K values calculated near the a- and c-tip vertices were used along with Eqn. (16) to 
determine the parameters S1 and S2, which in turn are used along with Eqn. (17) to calculate the 
maximum K in the vicinity of each vertex.  Figure 16 shows such a graph for the case for two 
symmetric corner cracks with a/c = 0.8, a/t = 0.2, r/t = 2 for the two vertices.  We see that 
calculated stress intensity factors at all points, not at a vertex, falls almost perfectly on a straight 
line, as predicted by the mathematical theory, see also reference [27].  Note that the closest 
points are only ≈ a/2000 from the vertices in this case.  The conclusion is that stress intensity 
data obtained with our hp-version of FEM are accurate up to the two vertices.  Lastly, the 
maximum KI/√(πa/Q) in the vicinity of the c-tip is 2.62 located 0.0.0059 units from the vertex 
and at the a-tip 3.24 and 0.0068, respectively.  The corresponding parametric angle of the ellipse, 
φ for the maximum KI/√(πa/Q)’s are 1.34° and 88.45°.  All crack growth codes assume a value 
for φ based on engineering judgment or experimental evidence in an attempt to capture the 
maximum K at the a- and c-tips; however, as the present analysis shows, this dubious assumption 
is no longer required.  

5 CONCLUSION 

Highly accurate stress intensity factor solutions for diametrically opposed unsymmetric part-
elliptical corner cracks at a hole subject to remote tension, remote bending, and bearing have 
been developed for all structurally significant crack configurations likely to occur in aircraft load 
bearing structure.  The specific crack configurations investigated were 0.1 ≤ a/c ≤ 10.0, 
0.1 ≤ a/t ≤ 10.0, and 0.2 ≤ r/t ≤ 10.0.  In total, 907,500 K solutions were generated and are 
currently being implemented in AFGROW.  The accuracy, less than 0.5% for all crack cases 
considered, of the hp-version FEA as well as mathematical splitting scheme has been 
unequivocally proven and demonstrated.  The location and magnitude of the maximum K at the 
a- and c-crack tips has been determined with less than 1% error.  Any further work in this area 
should concentrate on improving the less than 1% error in the stress intensity factor shown here; 
although the authors do not know such a need. 
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Figure 1 Parameter definition for two unequal corner cracks at centrally located hole in a finite 
width sheet subject to general loading 
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Figure 4 Splitting scheme sub-problems 
 

 

 

Figure 5 Global model used for all crack configurations and applied loads 
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Figure 6 Par of local mesh: a/c = 0.8, a/t = 0.2.  Note that only the polyhedral shape is depicted.  In 
the FE-analysis, the hole surface has an exact cylindrical shape and the crack front has an exact 
elliptical shape. 
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Figure 7 Convergence study for a single shallow corner crack at a hole subject to remote tension 
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Figure 8 Convergence study for a single deep corner crack at a hole subject to remote tension 
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Figure 9 Comparison of published results7 vs. STRIPE 
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Figure 10A Tension K solution comparison for a deep crack 
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Figure 10B Tension K solution comparison for a shallow crack 
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Figure 11A Bending K solution comparison for a deep crack 
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Figure 11B Bending K solution comparison for a shallow crack 
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Figure 12A Pin Loading K solution comparison for a deep crack 
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Figure 12B Pin Loading K solution comparison for a shallow crack 
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Figure 13A Vertex behavior for large, deep cracks in Tension 
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Figure 13B Vertex behavior for large, deep cracks in Bending 
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Figure 13C Vertex behavior for large, deep cracks in Pin Loading 
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Figure 14A Comparison of conversion factors for 1 to 2 cracks at hole, c-tip 
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Figure 14B Comparison of conversion factors for 1 to 2 cracks at hole, a-tip 

0.75

0.80

0.85

0.90

0.95

1.00

1.05

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
c 2/c 1

M (c 1,c 2)

Solid Line Dashed Line

2b  = 2h  = 200r  = 400

0.1

99.0

0.101.01.0
21

=

=

≤≤=

t
r
t
a

c
a

c
a

0.1

2.0

0.101.02.0
21

=

=

≤≤=

t
r
t
a

c
a

c
a

 

Figure 15 Effect of crack 2 on the K solution of crack 1 
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Figure 16 Characteristic K behavior near vertices for Bakuckas comparison 


	INTRODUCTION
	BACKGROUND
	MODELING THEORY AND IMPLEMENTATION
	K-EXTRACTION FROM FEA RESULTS
	SOLUTION BEHAVIOR CLOSE TO VERTICES
	SPLITTING SCHEME

	RESULTS AND DISCUSSION
	CONCLUSION
	REFERENCES

