

Air Force Life Cycle Management Center

Damage Tolerance vs. Durability: Analysis for Sustainment of T-38 Aircraft

U.S. AIR FORCE

Chad King T-38 Structural Integrity and Analysis Section

DISTRIBUTION A. Approved for public release: distribution unlimited. Ref # HAFB 2014_09_04_WLD_100; 75ABW-2014-0022

- Analysis Methodology
 - Damage Tolerance
 - Durability
- Case Study
 - Background
 - Damage Tolerance and Durability Results

Outline

- 1) Replacement (New)
- 2) Inspect and Reuse (Old)
- Lessons Learned
 - Analysis Approach

Analysis Methodology

Damage Tolerance

- Rogue flaw
- Inspection
- Fracture mechanics approach

Durability

- No rogue flaw
- Remove and replace or retire (safe-life)
- Stress life, strain life, fracture mechanics approaches

Background Case Study

Pacer Classic III

- Structural modification
- Longerons, floors, frames, etc

Background (cont.) Case Study

Original Dorsal Longeron

- Length is ~13 ft
- 300+ fasteners
- 20+ years
- 1st Modification
 - Recommended from first T-38 DTA
 - Sized to take all longeron load
 - Remnant remained (secondary)
 - 20+ years

Background (cont.) Case Study

- Remnant Included in:
 - Fuselage fatigue test
 - Current models (FEA, DTA)
 - 1st mod doesn't take all load
 - Inspection intervals
- 2nd Dorsal Mod
 - Part Removal Required
- Loading
 - 20+ years as primary
 - 20+ years as secondary

Inspect and Reuse or Remove and Replace?

Damage Tolerance Method

Case Study

- Material, Loading, Geometry Same
- Flaw Sizes
 - New IFS = 0.05"
 - Bolt hole inspection for old → DFS = IFS = 0.05"

Case Study

- BHEC is Feasible on Old During Mod
- Old vs New
 - Life and inspection intervals the same
- DTA Life < Design Service Life</p>
- Recurring Inspection not Practical

Durability Method Case Study

- Fracture Mechanics Approach
- Same as DTA but IFS = 0.005" (New)
- Stress Spectra, Prior 40+ years Unavailable

Durability Life (New = 7×Old) > Service Life

Recommendation: Remove and Replace

Analysis Approach Lessons Learned

- Manage using Durability
 - Component is not a single load path (fail-safe)
 - Future inspection not practical
 - Cost and a_{NDI} vs c_{cr}
 - Sealant removal
 - Limited access

Analysis Approach (cont.)

Lessons Learned

Sealant Removal Gone Bad

Lessons Learned

- Durability Analysis
 - Fracture mechanics approach with IFS = 0.005"
 - JSSG-2006, para. A.3.12.1
 - Durability life / 2 > service life
- Divide by 2
 - JSSG-2006, para. A.4.11.1.1
 - Fail safe structure
 - Loads are well known
 - Appropriate for fracture mechanics approach

