

AFGROW Workshop 2018

Post processing AFGROW output – First Look

Alex Litvinov, Matthew Gross, James Lambert LexTech, Inc .

Background

- Customers have requested the ability to generate reports that summarize the results of a life prediction analysis. For example:
 - Allow an overlay of da/dN vs. DK values used in an analysis on the crack growth rate plot. This provides a visual reference of the portion of the total growth rate curve being used in the analysis.
 - Show damage accumulation data in a pie chart or histogram
 - Show damage by source for a given crack growth analysis
- These reports can be generated either during a prediction by accumulating the necessary information, or all prediction information can be saved and then post processed.

Background

Post Processing

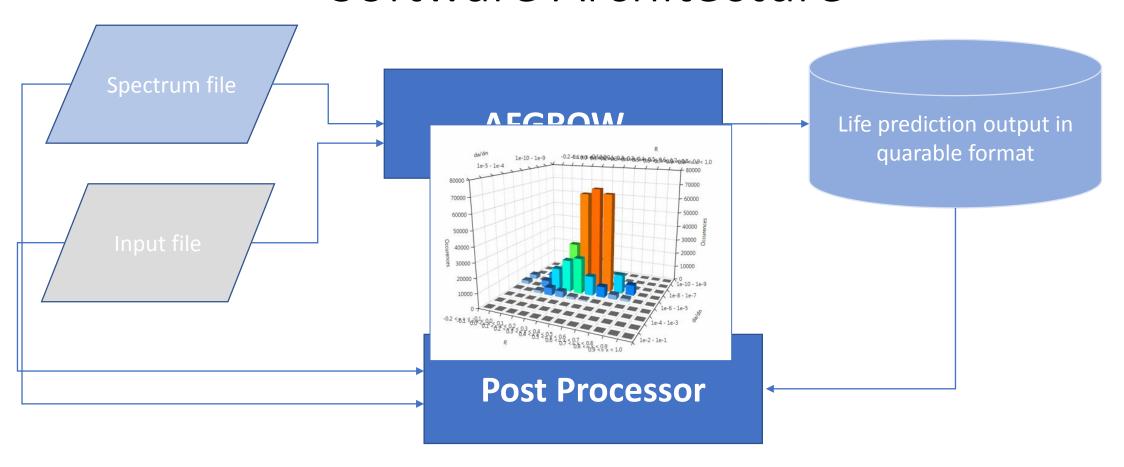
- Pros: The post-processing approach can allow unlimited number of reports be generated without modifying AFGROW. Users can generate report by themselves.
- Cons: The size of the output file

Generating reports during prediction

- Pros: Done in real time during the analysis
- Cons: Every new report will require modification of AFGROW. Users do not have opportunity to make any changes to the reports

What can be done by post processing AFGROW results

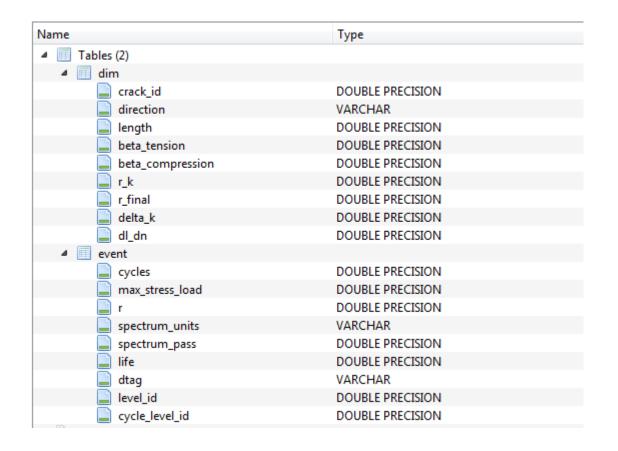
- Verify input data
- Promote a better understanding of the life prediction process
- Provide a detailed summary of the various elements of the analysis


Approach to post processing

- Need to save all life prediction information
- Flat output files will be extremely large even for the most trivial analysis, need to use a database file.
- The database access should be as simple as possible. Output files need to be easily created, moved and deleted.
- The database should run in-process with the application which is hosting it.

Software Architecture

Database Options

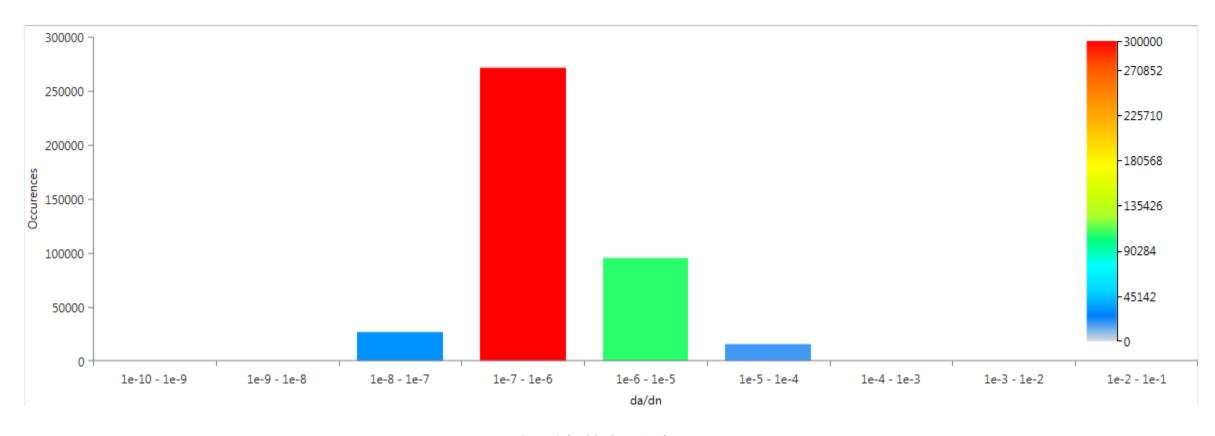

- SQLite compact in-process database.
- SQL Server Compact Edition compact in-process database, but support will end in July 2021.
- SQL Server Express runs as the service. Standalone database server (often run on a dedicated machine) that communicates with client applications.

Database design

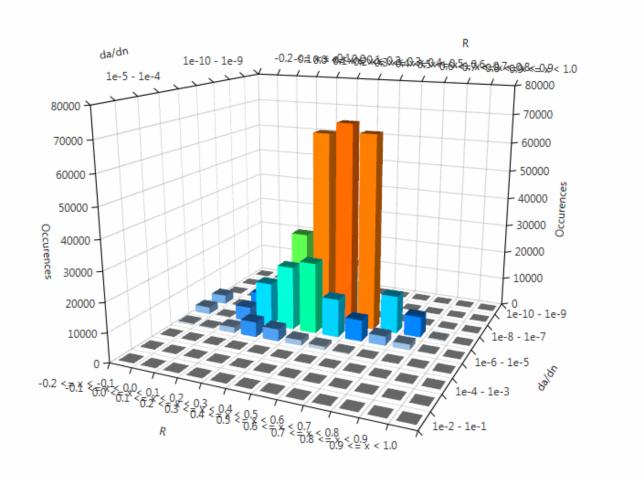
- 2 data tables, one for the loading information and another for direction information
- Similar to AFGROW XML output file format

Output data example: damage information

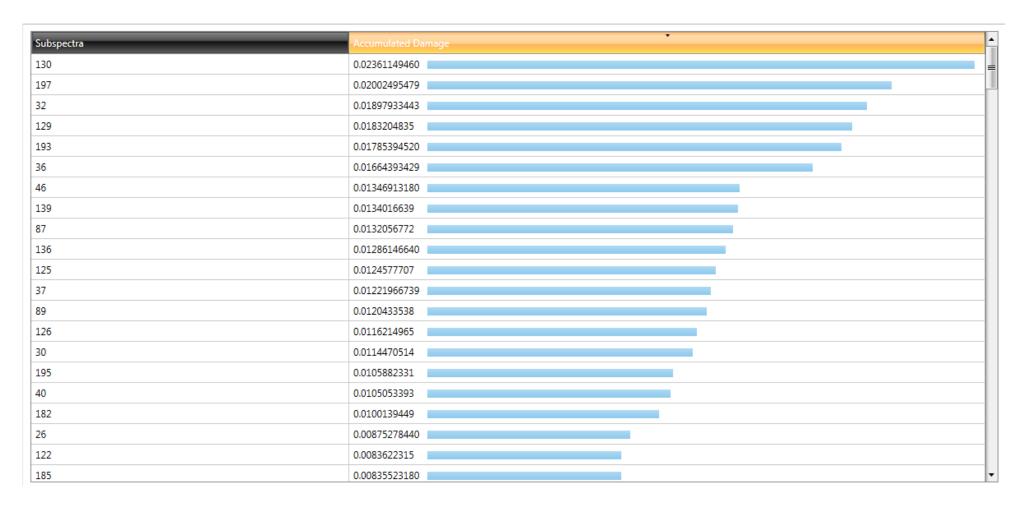
	crack_id	direction	length	beta_tension	eta_compressio	r_k	r_final	delta_k	dl_dn
	Filter	Filter	Filter	Filter	Filter	Filter	Filter	Filter	Filter
1	0.0	С	0.15	1.231455518	1.231455518	-5.352331606	-0.2	0.408	0.0
2	0.0	С	0.15	1.231455518	1.231455518	4.804651163	4.804651163	0.0	0.0
3	0.0	С	0.15	1.231455518	1.231455518	0.382230624	0.382230624	3.45	1.17e-07
4	0.0	С	0.1500001	1.231455518	1.231455518	0.452146691	0.452146691	2.59	7.99e-08
5	0.0	С	0.1500006	1.231455518	1.231455518	0.382230624	0.382230624	3.45	1.17e-07
6	0.0	С	0.1500007	1.231455518	1.231455518	0.452146691	0.452146691	2.59	7.99e-08
7	0.0	С	0.1500009	1.231455518	1.231455518	0.409878683	0.409878683	4.32	1.87e-07
8	0.0	С	0.1500012	1.231455518	1.231455518	0.227599244	0.227599244	4.32	1.31e-07
9	0.0	С	0.1500014	1.231455518	1.231455518	0.329321663	0.329321663	2.59	6.04e-08
10	0.0	С	0.1500014	1.231455518	1.231455518	0.452146691	0.452146691	2.59	7.99e-08
11	0.0	С	0.1500016	1.231455518	1.231455518	0.536483932	0.536483932	2.59	1.01e-07
12	0.0	С	0.1500017	1.231455518	1.231455518	0.409878683	0.409878683	4.32	1.87e-07
13	0.0	С	0.1500019	1.231455518	1.231455518	0.536483932	0.536483932	2.59	1.01e-07
14	0.0	С	0.150002	1.231455518	1.231455518	0.528018486	0.528018486	3.45	1.67e-07
15	0.0	С	0.1500022	1.231455518	1.231455518	0.598559267	0.598559267	2.59	1.22e-07
16	0.0	С	0.1500023	1.231455518	1.231455518	0.29202773	0.29202773	5.18	2.09e-07
17	0.0	С	0.1500025	1.231455518	1.231455518	0.452146691	0.452146691	2.59	7.99e-08
18	0.0	С	0.1500026	1.231455518	1.231455518	0.382230624	0.382230624	3.45	1.17e-07
19	0.0	С	0.1500028	1.231455518	1.231455518	0.452146691	0.452146691	2.59	7.99e-08
20	0.0	С	0.1500028	1.231455518	1.231455518	0.409878683	0.409878683	4.32	1.87e-07
21	0.0	С	0.150003	1.231455518	1.231455518	0.536483932	0.536483932	2.59	1.01e-07
22	0.0	С	0.1500031	1.231455518	1.231455518	0.382230624	0.382230624	3.45	1.17e-07
23	0.0	С	0.1500032	1.231455518	1.231455518	0.452146691	0.452146691	2.59	7.99e-08


Output data example – loading information

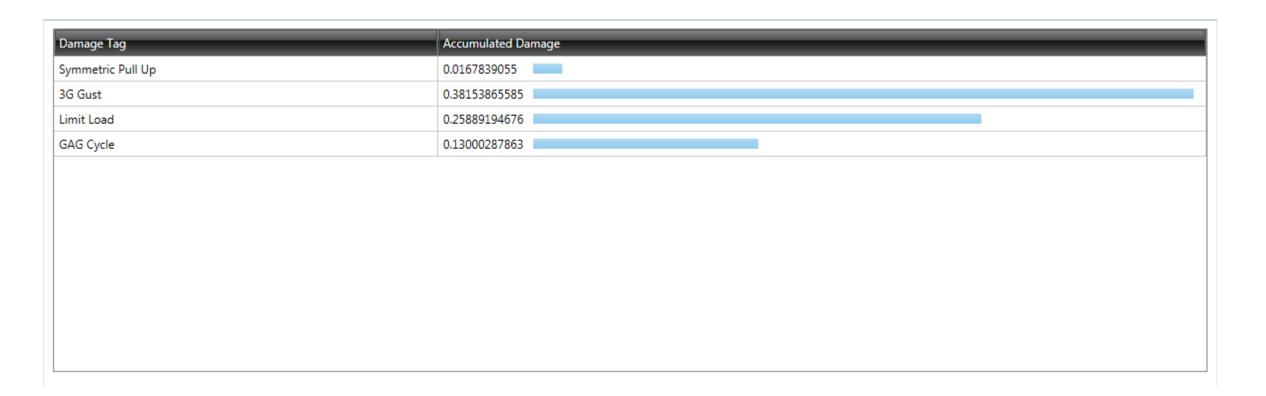
	cycles	max_stress_load	r	spectrum_units	spectrum_pass	life	dtag	level_id	cycle_level_id
	Filter	Filter	Filter	Filter	Filter	Filter	Filter	Filter	Filter
1	0.0	0.4825	-5.35	0	1.0	0.0	Symmetric Pu	0.0	0.0
2	1.0	-0.5375	4.8	0	1.0	1.0	Symmetric Pu	0.0	0.0
3	2.0	6.6125	0.38	0	1.0	2.0	Symmetric Pu	0.0	0.0
4	3.0	5.59	0.45	0	1.0	3.0	Symmetric Pu	0.0	0.0
5	9.0	6.6125	0.38	0	1.0	9.0	Symmetric Pu	0.0	0.0
6	10.0	5.59	0.45	0	1.0	10.0	Symmetric Pu	0.0	0.0
7	12.0	8.655	0.41	0	1.0	12.0	Symmetric Pu	0.0	0.0
8	14.0	6.6125	0.23	0	1.0	14.0	Symmetric Pu	0.0	0.0
9	15.0	4.57	0.33	0	1.0	15.0	Symmetric Pu	0.0	0.0
10	16.0	5.59	0.45	0	1.0	16.0	Symmetric Pu	0.0	0.0
11	18.0	6.6125	0.54	0	1.0	18.0	Symmetric Pu	0.0	0.0
12	19.0	8.655	0.41	0	1.0	19.0	Symmetric Pu	0.0	0.0
13	20.0	6.6125	0.54	0	1.0	20.0	Symmetric Pu	0.0	0.0
14	21.0	8.655	0.53	0	1.0	21.0	Symmetric Pu	0.0	0.0
15	22.0	7.635	0.6	0	1.0	22.0	Symmetric Pu	0.0	0.0
16	23.0	8.655	0.29	0	1.0	23.0	Symmetric Pu	0.0	0.0
17	24.0	5.59	0.45	0	1.0	24.0	Symmetric Pu	0.0	0.0
18	26.0	6.6125	0.38	0	1.0	26.0	Symmetric Pu	0.0	0.0
19	27.0	5.59	0.45	0	1.0	27.0	Symmetric Pu	0.0	0.0
20	28.0	8.655	0.41	0	1.0	28.0	Symmetric Pu	0.0	0.0
21	29.0	6.6125	0.54	0	1.0	29.0	Symmetric Pu	0.0	0.0
22	30.0	6.6125	0.38	0	1.0	30.0	Symmetric Pu	0.0	0.0
23	31.0	5.59	0.45	0	1.0	31.0	Symmetric Pu	0.0	0.0


da/dN occurrences

da/dN occurrences vs. R


-80000

- 70044


Damage accumulation per sub spectra

Damage accumulation per spectrum tag

Questions