

AFGROW Workshop 2011 - Layton, UT

Using the New Multi-Channel Spectrum Format

Alex Litvinov, James Harter LexTech, Inc

Current AFGROW Spectrum

To date, AFGROW has used a single channel load spectrum. Because of this limitation, K-solutions for combined loading (axial, bending, and bearing) are limited by the assumption that fractional components of each load case are constant.

Why Change?

• Several AFGROW Users have expressed an interest in the ability to input independent loading spectra for axial, bending, and bearing loads

• As we move toward a 3-D capability, it will be important to be able to manage applied loading in more than one direction

Current K Calculation

Alpha tension = Alpha axial * AxialTensionModifier+ Alphabending * BendingTensionModifier+Alphabearing * BearingTensionModifier
Alpha compression = Alpha axial * AxialCompressionModifier+ Alphabending * BendingCompressionModifier+Alphabearing * BearingCompressionModifier

Beta tension = (Alpha tension * Beta_{Correction}) / sqrt (Pi*Crack Length) **Beta** compression = (Alpha compression * Beta_{Correction}) / sqrt (Pi*Crack Length)

K max = Stress_{Max} * sqrt (Pi*Crack Length) * ((Stress_{Max} >= 0)? Beta tension: Beta compression) K min = Stress_{Min} * sqrt (Pi*Crack Length) * ((Stress_{Min} >= 0)? Beta_{tension}: Beta_{compression})

 $\mathbf{K}_{\max} = \mathbf{K}_{\max} + \mathbf{K}_{res}$ $\mathbf{K}_{\min} = \mathbf{K}_{\min} + \mathbf{K}_{res}$

Proposed K Calculation - Alpha

Alpha _{axial-tension} = Alpha _{axial} *AxialTensionModifier Alpha _{bending-tension} = Alpha_{bending} *BendingTensionModifier Alpha _{bearing-tension} = Alpha_{bearing} *BearingTensionModifier Alpha _{axial-compression} = Alpha _{axial} *AxialCompressionModifier Alpha _{bending-compression} = Alpha_{bending} *BendingCompressionModifier Alpha _{axial-compression} = Alpha_{bending} *BearingCompressionModifier

Beta axial-tension = (Alpha axial-tension * Beta _{Correction}) / sqrt (Pi*Crack Length)
Beta bending-tension = (Alpha bending-tension * Beta _{Correction}) / sqrt (Pi*Crack Length)
Beta bearing-tension = (Alpha bearing-tension * Beta _{Correction}) / sqrt (Pi*Crack Length)
Beta axial-compression = (Alpha axial-compression * Beta _{Correction}) / sqrt (Pi*Crack Length)
Beta bending-compression = (Alpha bending-compression * Beta _{Correction}) / sqrt (Pi*Crack Length)
Beta bearing-compression = (Alpha bearing-compression * Beta Correction) / sqrt (Pi*Crack Length)

Proposed K Calculation - Beta

 $\mathbf{K}_{max} = \mathbf{K}_{max-axial} + \mathbf{K}_{max-bending} + \mathbf{K}_{max-bearing}$ $\mathbf{K}_{min} = \mathbf{K}_{max-bearing} + \mathbf{K}_{min-bending} + \mathbf{K}_{min-bearing}$

 $\mathbf{K}_{max} = \mathbf{K}_{max} + \mathbf{K}_{res}$ $\mathbf{K}_{min} = \mathbf{K}_{min} + \mathbf{K}_{res}$

New Spectrum Format Goals

- Forward Compatible Can be added without breaking older versions
- Simple Can be easily understood
- Can be created manually in notepad and similar text editors with relatively minor effort
- Can be easily created using programming tools
- Easy to post process by readily available data processing applications (i.e. Excel)
- Easy to edit Modular

XML Based New Spectrum Format

- XML was designed to transport and store data with a focus on the data
- Is the basis for a majority document formats today: MS Office for example
- Available software libraries easy and fast development
- Familiar to software developers
- Easy to read
- Not as easy to create manually
- Tools exists that assist with XML file creation
- Powerful transformation pre and post processor library

Current Spectrum Format

- •Minimum of 2 files Information and SubSpectrum
- •Text base
- •Very easy to create manually or programmatically

Information

```
AFGROW Tutorial Sample Spectrum
Block
BLOCKED
1
```

SubSpectrum

1 2 16.000000 0.000000 1 12.000000 8.000000 1000

Preliminary View of the New Spectrum Format

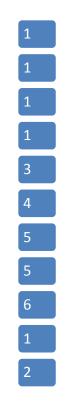
Header

Sub-Spectrum

Spectrum Header

Title
Description
SubSpectrum Label
Time Dependent or Not
Hours Per Pass
Multi Channel or Not ???

Sub Spectrum



Level

MinAxial
MaxAxial
MinBearing
MaxBearing
MinBending
MaxBending
Cycles
Time
Cycle Shape

New Spectrum Format Sequence

List of sub spectra by name in the order to be applied in the spectrum

New Spectrum Format Application Support

- Afgrow: Open, View, Zoom, Exceedance curve
- New Spectrum Conversion Utility Afgrow tool
- New Spectrum Design/Editing Application, Separate, but still part of AFGROW in terms of licensing
- Old AFGROW spectrum creation Wizard will be removed

New Spectrum Design/Edit Application Capabilities

- Visual representation of spectrum, sub-spectra
- Editing spectrum in the spreadsheet like control
- Editing Sequence using Drag and Drop
- Clipping
- Truncation
- Spectrum generation from Exceedance Data
- Randomization

Future Development

- Out of phase spectrum?
- Cycle counting Jim's Cycle counting app?,
- Any other suggestions?

Summary

- Afgrow will have Multi-channel spectrum support in the next release
- New spectrum format development has been completed
- A new spectrum tool will be created
- Afgrow will support old spectrum format initially, but we hope to transition everyone to the new format