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1. Introduction

In aircraft structures, fatigue failures usually occur from the initation and
propagation of cracks from notches or defects in the material that are either
embedded, on the surface, or at a corner. These cracks propagate with elliptic or
near-elliptic crack fronts. To predict crack-propagation life and fracture strength,
accurate stress-intensity factor solutions are needed for these crack configurations.
But, because of the complexities of such problems, exact solutions are not
available. Instead, investigators have had to use approximate analytical methods,
experimental methods, or engineering estimates to obtain the stress-intensity
factors. ‘

Very few exact solutions for three-dimensional cracked bodies are available in
the literature. One of these, an elliptical crack in an infinite solid subjected to
uniform tension, was derived by Irwin [1] using an exact stress analysis by Green
and Sneddon [2]. Kassir and Sih [3], Shah and Kobayashi [4], and Vijayakumar and
Atluri [5] have obtained closed-form solutions for an elliptical crack in an infinite
solid subjected to non-uniform loadings. :

For finite bodies, all solutions have required approximate analytical methods.
For a semicircular surface crack in a semi-infinite solid and a semi-elliptical surface
crack in a plate of finite thickness, Smith et al. [6], and Kobayashi [7], respectively,
used the alternating method to obtain stress-intensity factors along the crack front.
Raju and Newman [8, 9] used the finite-element method; Heliot et al. [10] used the
boundary-integral equation method; and Nishioka and Atluri [11] used the
finite-element alternating method to obtain the same information. For a quarter-
elliptic’corner crack in a plate, Tracey [12] and Pickard [13] used the finite-element
method; Kobayashi and Enetanya [14] used the alternating method. Shah [15]
estimated the stress-intensity factors for a surface crack emanating from a circular
hole. For a single corner crack emanating from a circular hole in a plate, Smith and
Kullgren [16] used a finite-element alternating method to obtain the stress-intensity
factors. Hechmer and Bloom [17] and Raju and Newman [18)] used the finite-
element method for two symmetric corner cracks emanating from a hole in a plate.
Most of these results were for limited ranges of parameters and were presented in
the form of curves or tables. For ease of computation, however, results expressed
in the form of equations are preferable.

- The present paper presents equations for the stress-intensity factors for a wide
variety of three-dimensional crack configurations subjected to either uniform
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remote tension or bending loads as a function of parametric angle, crack depth,
crack length, plate thickness, and hole radius (where applicable); for example, see
Fig. 1. The equation for uniform remote tension were obtained from Ref. [19]. The
tension equations, however, are repeated here for completeness and because the
correction factors for remote bending are modifications of the tension equations.
The crack configurations considered, shown in Fig. 2, include: an embedded
elliptical crack, a semi-elliptical surface crack, a quarter-elliptical corner crack, a
semi-elliptical surface crack at a circular hole, and a quarter-elliptical corner crack
at a circular hole in finite-thickness plates. The equations were based on stress-
intensity factors obtained from three-dimensional finite-element analyses
[8,9,18,19] that cover a wide range of configuration parameters. In some
configurations, the range of the equations was extended by using stress-intensity
factor solutions for a through crack in a similar configuration. In these equations,
the ratio of crack depth to plate thickness (a/t) ranged from 0 to 1, the ratio of
crack depth to crack length (a/c) ranged from 0.2 to 2, and the ratio of hole radius
to plate thickness (r/r) ranged from 0.5 to 2. The effects of plate width (b) on
stress-intensity variations along the crack front were also included, but were either
based on solutions of similar configurations or based on engineering estimates.

2. Stress-intensity equations

The stress-intensity factor, K, at any point along the crack front in a finite-
thickness plate, such as that shown in Fig. 1, was taken to be'

K=(S,+ HS,)(ma/Q)""F, (1a)
where

F,=[M, + My(alt)’ + My(a/0)*1¢f, f., (1b)
and

H,=H,+(H,— H,)sin” ¢ . (1)

The function Q is the shape factor for an ellipse and is given by the square of the
complete elliptic integral of the second kind [2]. The boundary-correction factor,
F,, accounts for the influence of various boundaries and is a function of crack
depth, crack length, hole radius (where applicable), plate thickness, plate width,
and the parametric angle of the ellipse. The product H,F, is the corresponding
bending correction. The subscript j denotes the crack configuration: j = c is for a

1 .
For nomenclature, see Appendix.
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- corner crack in a plate, j =e is for an embedded crack in a plate, j =s is for a
surface crack in a plate, j = sh is for a surface crack at a hole in a plate, and j = ch is
for a corner crack at a hole in a plate. Functions M,, M,, M,, H,, H,, and p are
defined for each appropriate configuration and loading. The series coﬁtaining M;is
the boundary-correction factor at the maximum depth point. The function f, is an
- angular function derived from the solution for an elliptical crack in an infinite solid.
This function accounts for most of the angular variation in stress-intensity factors.
The function f, is a finite-width correction factor. The function g denotes a product
of functions, such as g,g,...g,, that are used to fine-tune the equations.
Functions H, and H, are bending multipliers obtained from bending results at ¢
equal to zero and /2, respectively. Fig. 3 shows the coordinate system used to
define the parametric angle, ¢, for a/c less than and a/c greater than unity.

Very useful empirical expressions for Q have been developed by Rawe (see Ref.
[9]). The expressions are

Q =1+ 1.464(a/c)"® fora/c=<1 - (2a)
Q =1+ 1.464(c/a)"* foralc>1. . (2b)

The maximum error in the stress-intensity factor caused by using these approximate
equations for Q is about 0.13% for all values of a/c. (Rawe’s original equation was
written in terms of a/2c¢.)

In the following sections, the stress-intensity factor equations for embedded
elliptical cracks, semi-elliptical surface cracks, quarter-elliptical corner cracks,
semi-elliptical surface cracks at a hole, and quarter-elliptical corner cracks at a hole
in finite plates (see Fig. 2) subjected to either remote tension or bending loads are

y ' )
| I b

TN
i/@\

f——c— f—c —

(@) a/¢c =1 ) ase >1

~

Fig. 3 Coordinate system used to define parametric angle
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Table 1 Range of applicability for stress-intensity factor equations

Configuration Equation ¢ alt alc rit (r+to)/b
Embedded crack in plate® (3) —mtom ®) 0to - <0.5@
Surface crack in plate (14) 0tom ® 0to2 - <0.5°
Corner crack in plate (37) Otom/2 <1 02t02 - <059
Surface crack at hole®™® (53) —mi2tom2 <1 02to2 05to2 <05
Corner crack at hole” (65) 0tow/2 © 02t2 052 <05

® Equations for bending were not developed for this case.
® g/t <1.25 (alc +0.6) for 0=<a/c=<0.2 and a/r<1 for a/c>0.2.
[ J— )
r=0.
“ QOne or two symmetric cracks.
© g/t <1 for remote tension and a/t=<0.8 for remote bending.

presented. The particular functions chosen were obtained from curve fitting to
finite-element results [8, 9, 18, 19] by using polynomials in terms of a/c, a/t, and
angular functions of ¢. For cracks emanating from holes, polynomial equations in
terms of ¢/r and ¢ were also used. Typical results will be presented for a/c =0.2,
0.5, 1, and 2 with a/t varying from 0-to 1. Table 1 gives the range of applicability of
¢, alt, alc, r/t, and (r + ¢)/b for the proposed equations.

2.1. Embedded elliptical crack

The stress-intensity factor equation for an embedded elliptical crack in a finite
plate, Fig. 2(a), subjected to tension was obtained by fitting Eq. (1) to finite-
element results in Ref. [19]. The results of Irwin [1] were used to account for the
limiting behavior as a/c approaches zero or infinity. The equation is

K = S(mwalQ)'*F.(alc, alt, c/b, ) (3)
for 0<<al/c<w, ¢/b<0.5, and —m < ¢ < 7 provided that a/t satisfies:

a/t<1.25(al/c +0.6) forO=<al/c=<0.2
4

alt<1 for0.2=glc=so,

The function F, accounts for the influence of crack shape (a/c), crack size (a/t),
finite width (¢/b), and angular location (¢), and was chosen as

F.=[M, +M2(a/t)2+ Ms(a/t)4]gf¢fw . w ()

The terms in brackets gives the boundary-correction factors at ¢ = 7/2 (where
g =f, =1). The function f, was taken from the exact solution for an embedded
elliptical crack in an infinite solid [1] and f, is a finite-width correction factor. The
function g is a fine-tuning curve-fitting function. '
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Foralc=<1:
M, =1 - (6)
2701 3.(0:/6)3/2 )
37 0.23 E'?z/c)m (8)
and | ,
fs = [(alc)® cos® ¢ +sin® ¢]1’4 . (10)

(Note that Eq. (9) is siightly different ffom, and is believed to be more accurate, -
than that given in Ref. [19].) The finite-width correction, f,, from Ref. [9] was

fo=see( 55 V5 )] - a

for ¢/b <0.5. (Note that for the embedded crack ¢is defined as one-half of the full
plate thickness.)
For alc>1:

= (c/a)"? o - (12)
and ».
= [(c/a)? sin® ¢ +cos? p]M*. - (13)

The functions M,, M,, g, and f, are the same as Eqs (7), (8), (9) and (11),
respectlvely

~ Fig. 4 shows some typlcal boundary-correctlon factors for various crack shapes
(alc=0.2,0.5, 1, and 2) with a/t equal t0 0, 0.5, 0.75, and 1. The correction factor,
F,, is plotted against the parameter angle, ¢. At ¢ =0, the point on the crack front
that is located at the center of the plate, the influence of plate thickness is much less
than at ¢ = m/2, the point that is located closest to the plate surface. The results
shown for a/t =0 are the exact solutions for an elliptical crack in an infinite solid
[1}. For a/t<0.8, the results from the equation are within about 3% of the
finite-element results. (Herein, “‘percent” error is defined as the difference
between the equation and the finite-element results normalized by the maximum
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Fig. 4 Typical boundary-correction factors for an embedded elliptical crack in the center of a plate
subjected to remote tension (c/b =0)

value for that particular case. This definition is necessary because, in some cases,
the stress-intensity factor ranges from positive to negative along the crack front.)
For a/t> 0.8, the accuracy of Eq. (3) has not been established. But its use in that
range appears to be supported by estimates based on an embedded crack
approaching a through crack (see Ref. [19]). ‘
Bending equations were not developed for the embedded elliptical crack.

2.2. Semi-elliptical surface crack

The equations for the stress-intensity factors for a semi-elliptical surface crack in
a finite plate, Fig. 2(b), subjected to remote tension and bending loads were
obtained from Ref. [9]. The tension and bending equations were previously fitted
to finite-element results from Raju and Newman [8] for values of a/c less than or
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equal to unity. Equations for tension and bending loads for a/c greater than unity
were developed herein. The results of Gross and Srawley [20] for a single-edge
crack were used to account for the limiting behavior as a/c approaches zero. The
equation is

K =(S,+ HS,)(walQ)"*F(alc, alt, c/b, $) | (14)

for 0 <alcs< 2,¢/b<0.5,and 0 < ¢ < 17, again, provided that a/¢ satisfies Eq. (4).
The function F, was chosen to be

F,=[M, + My(a/t) + My(alt)*|gf, fu. sy
Foralc=1:

M, =1.13-0.09a/c , i | (16)

| 0.89 | |
Mz =—0.54 + m - : | (17)
M,=05— —— 4 14(1 - a/-¢)24 | | (18)

3 - 0.65+alc ’

g=1+[0.1+0.35(a/t)*](1 - sin ¢) ' (19)

and f, is given by Eq. (10). The finite-width correction, f,,, is again given by Eq.

(11). Egs. (15)-(19) were taken from Ref. {9]. [The large power in Eq. (18) was

needed to fit the behavior as a/c approaches zero.] ‘
The bending multiplier, H,, in Eq. (1) has the form

H =H, +(H,—- H)sin® ¢ =~ (20)

where H;, H, and p are defined for each crack conﬁguratlon considered. For the
surface crack (j=s),

p=02+alc+0.6alt ‘ - | (21)

H,=1-0.34a/t —0.11(a/c)(a/t) (22) -
and

H,=1+ G,,(alt) + Gp(alt). (23)

In this equation for H,,

G,, = —1.22-0.12a/c , | 4 (24)
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G,, =0.55 - 1.05(a/c)*” +0.47(alc)" .

Egs. (21)-(25) were taken from Ref. [9].
~ Foralc>1:

M, = (c/a)""*(1 + 0.04c/a)

M, =0.2(c/a)*

M, =-0.11(c/a)*

g=1 + [0.1+ 0.35(c/a)(a/t)*](1 —sin ¢)>

“and [, and f are given by Eqgs. (13) and (11), respectively.
The bending multiplier for a/c > 1 is also given by Eq. (20) where

p=02+c/a+0.6alt
H, =1+ G al/t+ G(alt)
H,=1+ G,alt+ Gy(alt)
G,, =—-0.04—0.41c/a
Gl?—.f‘ 0.55 — 1.93(c/a)”" +1.38(c/a)"*
G, =-211+0.77c/a
and

G,, =0.55 - 0.72(c/a)" " + 0.14(c/a)' " .

(25)

(26)
(27)
(28)

(29)

(30)
(31)
(32)
(33)
(34)

(35)

(36)

Figs. 5 and 6 show some typical boundary-correction factors for various surface
crack shapes (a/c =0.2, 0.5, 1, and 2) with a/t equal to 0, 0.5, and 1 for tension and
‘bending, respectively. For all combinations of parameters investigated and a/t <
0.8, Eq. (14) was within =5% of the finite-element results (0.2 < a/c <2) and the
single-edge crack solution (a/c = 0). For a/t > 0.8, the accuracy of Eq. (14) has not
been established. However, its use in that range appears to be supported by

estimates based on a surface crack approaching a through crack.

The use of negative stress-intensity factors in the case of bending are applicable
only when there is sufficient tension to keep the crack surfaces open; that is, the
total stress-intensity factor due to combined tension and bending must be positive.
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Fig. § Typ1ca1 boundary -correction factors for a surface crack in a plate subjected to remote tension

(c/b 0)

2 .3. Quarter-elliptical corner crack

- The stress-intensity factor equations for a quarter-elliptical corner crack in a
finite plate, Fig. 2(c), subjected to tension and bending loads were obtained by
fitting Eq. (1) to the finite-element results in Ref [19] for tension and the results in
- Table 2 for bending. The equatlon is

K=(S,+HS )(wa/Q)mF (alc, alt, c/b, ¢) | o - (37)

~ for 0. 2<a/c<2 a/t<1 and 0=<¢ <u/2 for ¢/b<0.5. The function F, was
chosen as .

F,=[M, + Mya/0)’ + My@/0)lggof, o | - (38)
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Fig. 6 Typical boundary-correction factors for a surface crack in a plate subjected to remote bending

(c/b=0)
Forales 1:

M, =1.08—0.03a/c

1.06

Mz =—0.44 + m

M,=—0.5+0.25a/c+14.8(1 — a/c)"®
g, =1+ [0.08 +0.4(a/0)*|(1 - sin ¢)’

g, =1+[0.08 +0.15(a/t)*](1 — cos ¢)’

(39)
(40)
(41)
(42)

(43)

and f, is given by Eq. (10). The finite-width correction, f, , was estimated herein by



Stress-intensity factor equations o , 323

Table 2 Boundary-correction factors, F,H,, for quarter-
elliptical corner crack in a plate subjected to bending
(v=03; F,H = K/[S,(ma/Q)""*]) ~

alt

alc 2¢ /7 0.2 - 0.5 0.8
0 0.522 0.609 0.779

0.25 0.669 0.702 0.808
0.2 0.5 - 0.801 0.746 0.716
0.75  0.868 0.746 0.577
1.0 0.876 - 0.750 0.604
0 0740 0.799 0.904
: 0.25 0.724 0.690 0.670
0.4 0.5 0.785 0.632 0.451
0.75 0.826 . 0.583 0.272
1.0 - 0.846 0.569 - 0.262
0 ' 1.084 1.046 1.027
0.25 0.934 0.770 " 0.604
1.0 0.5 0.838 0.547 0.237
0.75 0.798. 0.417 0.011
1.0 " 0.839 0.407 -0.032

0 0.932 0.811 0.734
025 . 0.851 0.623 0.442

2.0 0.5 0.761 0.413 0.105
0.75 0.700 0.268 —-0.131
1.0 0.677 0.215 ~0.206

using the single-edge crack tension solution giveh in Ref. [21] (divided by 1.12) and
‘was ; ,
. Fe=1-020+9.427 - 19.40° +27.10° o (44)

where A = (c/ b)(a/t)''%. (The width corrcctlon from Ref. [21] was d1v1ded by 1.12
because the front-face correction ‘was already included in Eq. (38).) Eq. (44) is
restncted to ¢/b<0.5.

'As a/t approaches unity, with a/c =1 and ¢ =0, the stress-intensity factor
equatlon Eq. (37) for tension reduces to

K=S(mc)''*1.11f, . | AR (45)'

Eq. (45) is within about 1% of the accepted solution [21] for ¢/b <0.6.

~ The bending multiplier, H,, has the form given by Eq. (20). The functions p, H,,
'H,; and G,, are given by Eqs (21)- (24) respectlvely, for a/c < 1. The function

G, 2 is

Gy =0.64— 1‘.05(@/_‘:)"-75 +0.47(alc)" . | (46)
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Foraic>1:
M, =(c/a)"'*(1.08 — 0.03¢/a) (47)
. M, =0.375(c/a)’ < (48)
M, =-0.25(c/a)’ (49)
g, =1+[0.08+0.4(c/t)*](1—sin @)’ (50)
g, =1+[0.08+ 0.15(c/t)*](1 — cos ¢)’ (51)

and f, is given by Eq. (13). The finite-width correction is again given by Eq. (44).

The bending-correction factor H_ is again given by Eq. (20) where p, H,, H,,
G,,, G,, and G,, are given by Eqgs. (30)-(35), respectively. The function G,, is
given by

G,, =0.64 —0.72(c/a)*” + 0.14(c/a)"* . (52)

Figs. 7 and 8 show some typical boundary-correction factors for corner cracks in
plates for various crack shapes (a/c =0.2, 0.5, 1 and 2) with a/¢ varying from 0 to 1
for tension and bending, respectively. At a/t=0, the results for tension and
bending are identical. As expected, for tension the effects of a/t are much larger at
lower values of a/c. Again, the use of negative stress-intensity factors in this case of
' bending are applicable only when there is sufficient tension to keep the crack
surfaces open (stress-intensity factor due to combined tension and bending must be
positive).

2.4. Semi-elliptical surface crack at hole

2.4.1. Two symmetric surface cracks

The stress-intensity factor equation for two symmetric semi-elliptical surface
cracks located along the bore of a hole in a finite plate, Fig. 2(d), subjected to
tension was obtained by fitting Eq. (1) to finite-element results [19]. The equation is

K=S8(malQ)*F (alc,alt, rit, rib, cib, $) (53)
for 0.2=<alc=<2, alt<1, 05=r/t<2, (r+c¢)/b<0.5, and —w/2<¢d=<m/2.

(Note that here ¢ is defined as one-half of the full plate thickness.) The function F,,,
was chosen as ‘

Fo,=[M; + [‘42(“/1‘)2 + Ms(a/t)4] 818283 1 - | (54)
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0 + ] o -
{(a) a/c = 0.2, (b) a/c = 0.5.

% 5 10 5 !
2¢/m 24/m
(¢) a/c = 1. (d) a/c = 2,
Fig. 7 Typical boundary-correction factors for a corner crack in a plate subjected -to remote tension
(c/b=0)
Forale<1:
M =1 | (55)
B 0.05 s
2 0.11 + (alc)*? (56)
' 10.29
37023+ (alc)*? (57)
. (al*26-2alt)"” |
& =1-- 1+ 4(a/c) cos ¢ (58)
_ 1+0.3580 +1.4250% — 1.578A° +2.156A (59)
& T 140,08 ’
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1.5+ ' v

a/t =0

1.04

.51

Fehie

(a) a/c = 0.2, (b) a/c = 0,5,
l.5'|'

1] 5
1
0 .5 1 0 5 1
29/ 7 20/
“(c) a/c = 1, (d) a/c = 2,
Fig. 8 Typical boundary-correction factors for a corner crack in a plate subjected to remote bending
(¢/b=0)
A= 1 (60)
1+ (c/r) cos(0.9¢)

g, =1+0.1(1—cos ¢)*(1 —a/t)"’. (61)

(Note that Eq. (58) is slightly different from, and is believed to be more accurate
than, that given in Ref. [19].) The function f, is given by Eq. (10). The finite-width
correction, f,, was taken as

o=l ) s 52575 Vi1 @

where n =1 is for a single crack and n =2 is for two symmetric cracks. This
equation was chosen to account for the effects of width on stress concentration at
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the hole [22] and for crack eccentricity [21].
For alc>1:

M, =(c/a)"'?. (63)

The function M,, M;, g, g,, g, and A are given by Egs. (56)—(61), and the
functions fs and f, are given by Egs. (13) and (62), respectively.

2.4.2. Estimates for a single surface crack

The stress-intensity factors for a single surface crack located along the bore of a
hole were estimated from the present results for two symmetric surface cracks by
using a conversion factor developed by Shah [15]. The relationship between one
and two surface cracks was given by

() e = [(%* %)/(% * %)]m(’() e (64)

where K for two cracks must be evaluated for an infinite plate (£, = 1) and then the
finite-width correction for one crack must be applied. Shah had assumed that the
conversion factor was constant for all locations along the crack front, that is
independent of the parametric angle.

Fig. 9 shows some typical boundary-correction factors for a single surface crack
at a hole for various crack shapes (a/c = 0.2, 0.5, 1 and 2) with a/t varying from 0 to
1. These results were in good agreement with boundary-correction factors esti-
mated by Shah [15]. The agreement was generally within about 2% except where
the crack intersects the free surface (2¢/m =1). Here the equation gave results
-that were 2-5% higher than those estimated by Shabh.

Stress-intensity factor equations for bending were not developed for a surface
crack located at the center of a hole

’ 25 Quarter-elliptical corner crack at a hole

2 5.1. Two symmetric corner cracks

The stress-intensity factor equatlons for two symmetric quarter«elhptlcal corner
cracks at a hole in a finite plate, Fig. 2(e), subjected to remote tension and bending
loads were obtained by fitting to finite- element results in Ref. [18]. The equation is

K=(S,+ H,S,)(malQ)*F.(alc, alt, rit, rb, ¢ib, é) (65)

for 0.2<alc<2, alt<1, 0.5=<r/t<2, (r+c)/b<0.5, and 0<¢<7r/2 The
function F,; was chosen as



328 ' J.C. Newman, Ir. and LS. Raju

(a) a/c = 0.2, (b) a/c = 0.5,

5t
Fsh
1t
i
0 + i } 4
0 .5 1 0 .5 1
20/ ¢/
(¢) a/c = 1. (d) a/c = 2,

Fig. 9 Typical boundary-correction factors for a single surface crack at the center of a circular hole in a
plate subjected to remote tension (r/t=1; r/b =0)

F,=[M, + ]‘42(‘1/02 + MS(a/t)4]gngg3g4f¢fw . (66)
Foralcs1:
M, =1.13-0.09a/c (67)
0.89
M,=-0.54 + 02+ ale (68)
— o — 24 , v
M;=05 065+ ale +14(1 —a/c) (69)

g, =1+[0.1+0.35(a/t)*](1 - sin ¢)° | | (70)
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_ 1+0.3581 + 1.4251% — 1.578)° +2.156A°
& 1+0.1347

(71)

where

1

A= 1+ (c/r) cés(,cub)

(72)

p = 0.85 for tension and - u = 0.85 — 0.25(a/t)"'* for bending. The functions g, and
g, are given by

g =0+ 0.64a/c)[1 +0.1(1 - cos ¢j2}[0.85 + 0.15,(@/0”“] ('73)
and | |

g,=1-0.71—-a/t)(a/c —0.2)(1 - alc) | | (74)
’ Thé.fun'ct-ions f, and. f, are given by Egs. (10) and (62), Iespéétively. N

The bending multiplier, H.,, is given by Eq. (20) for a/c <1. The terms p, H,
and H, are given by - | |

p=0.1+13a/t+1.1alc —0.7(alc)alt) o (75)
H, =1+ Galt+ Gu(a_/t)z + Gp(alt)’ | | (76)
and | |
-H;l =1+ Gzla/t + Gzz(a/t)z{- Gy(alty . (77)
- where | -
G, =—0.43-0.74a/c - 0.84(a/c)* o (78)
G, =125 1.19a/c + 4.39alc® | (79)
Gy, _ ~1.94 + 4 22alc - 5.51(a/c)2 . N (80)
G, = —1.5—0.04alc - LT ale? R (@8
G, =1.71-3.17a/c + 6.84(alc) - | (82)
Gyy = ~1.28+2.7Tlalc—5.22(alc) . 7_ (83)

For»a'/c >1:
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M = (c/a)m(i + 0.04¢/a)
M, =0.2(c/a)*
M, =-0.11(c/a)*

g, =1+][0.1+0.35(c/a)(a/t)*}(1 —sin ¢)*.

(84)
(85)
(86)

(87)

The functions g, and A are given by Eqs. (71) and (72) and the function g, is given

by

g, =(1.13=0.09¢/a)[1 + 0.1(1 — cos ¢)°][0.85 + 0.15(a/t)""*]

a/¢c = 0.2, {b) a/c = 0.5.

0 + 1 + {
0 .5 1 0 .5 1
20/m 2o/

(¢) a/c = 1, (d) a/c = 2.

(88)

Fig. 10 Typical boundary-correction factors for a single corner crack at the edge of a circular hole in a

plate subjected to remote tension (r/t=1; r/b =0)
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and g, =1. The functions fs and f, are agam given by Egs. (13) -and (62),
respectively.

Again, the bending-correction factor, H_; , is given by Eq. (20). The function p is
given by Eq. (30) for a/c>1. The H-functlons are glven by Egs. (76) and (77) '
where

G,=-207+006c/a o (89)
Gy, =435 +0.16¢/a S (%0)
Gy =—2.93-03c/a | o (1)
Gy =—3.64+037cla | | | (92)

8
5 0 51
wWim - oym

©afc=1. (d) o/c = 2,

Flg 11 Typlcal boundary—correctlon factors for a two-symmetric corner crack at the edge of a circular
hole in a plate subjected to remote bending (r/t =0.5; r/b=0)
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G,,=5.87—-0.49¢c/a - (93)
G,, =—4.32+0.53c/a : : (94)

2.5.2. Estimates for a single corner crack

The stress-intensity factors for a single corner crack at a hole were estimated
from the present results for two symmetric corner cracks by using the Shah-
conversion factor [Eq. (64)]. Raju and Newman [18] have evaluated the use of the
conversion factor for some corner-crack-at-a-hole configurations. The stress-
intensity factor obtained using the conversion factor were in good agreement with
the results from Smith and Kullgren [16] for a single corner crack. at a hole.

Figs. 10 and 11 show some typical boundary-correction factors for a single corner
crack at a hole for various a/c and a/t ratios for tension and bending, respectively.
Again, the use of negative stress-intensity factors in the case of bending are
applicable only when there is sufficient tension to make the total stress-intensity
factor, due to combined tension and bending, positive.

3. Concluding remarks

Stress-intensity factors from three-dimensional finite-element analyses were used
to develop stress-intensity factor equations for a wide variety of crack configur-
ations subjected to either remote uniform tension or bending loads. The following
configurations were included: an embedded elliptical crack, a semi-elliptical surface
crack, a quarter-elliptical corner crack, a semi-elliptical surface crack along the
bore of a hole, and a quarter-elliptical corner crack at the edge of a hole in finite
plates. The equations cover a wide range of configuration parameters. The ratio of
crack depth to plate thickness (a/¢) ranged from 0 to 1, the ratio of crack depth to
crack length (a/c) ranged from 0.2 to 2, and the ratio of hole radius to plate
thickness (r/¢) ranged from 0.5 to 2 (where applicable). The effects of plate width
(b) on stress-intensity variations along the crack front were also included, but
were based on engineering estimates.

For all configurations for which ratios of crack depth to plate thickness do not
exceed 0.8, the equations are generally within 5% of the finite-element results,
except where the crack front intersects a free surface. Here the proposed equations
give higher stress-intensity factors than the finite-element results, but these higher
values probably represent the limiting behavior as the mesh is refined near the free
surface. For ratios greater than 0.8, no solutions are available for direct compari-
son; however, the equations appear reasonable on the basis of engineering
estimates. :

The stress-intensity factor equations presented herein should be useful for
correlating and predicting fatigue crack growth rates as well as in computing
fracture toughness and fracture loads for these types of crack configurations.
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Appendix

depth of crack
width or half-width of cracked plate (see Fig. 2)
half-length of crack
boundary-correction factor for corner crack in a plate under tension
boundary-correction factor for corner crack at a hole in a plate under tension
boundary-correction factor for embedded crack in a plate under tension
boundary-correction factor on stress intensity for remote tension |
boundary-correction factor for surface crack in a plate under tension
boundary-correction factor for surface crack at a hole in a plate under tension
finite-width correction factor | | _

angular function derived from embedded elliptical crack solution
curve fitting functions defined in text
bending multiplier for corner crack in a plate

bending multiplier for corner crack at a hole in a plate
bending multiplier on stress intensity for remote bendmg
bending multiplier for surface crack in a plate

half-length of cracked plate

stress-intensity factor (mode-I)
. applied bending moment :

curve fitting functions defined in text (i=1, 2, or 3)

shape factor for elliptical crack

radius of hole
-remote bending stress on outer fiber, 3M/ bt’

remote uniform tension stress

thickness or one-half plate thickness (see Fig. 2)

function defined in text

Poisson’s ratio (v =0.3)

parametric angle of ellipse, deg
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