2007 Aircraft Structural Integrity Program Conference

The Effect of Stress Intensity Factor Models on Inspection Intervals

AIR FORCE

Lt Col Scott Fawaz

Center for Aircraft Structural Life Extension United States Air Force Academy

Integrity - Service - Excellence

DISTRIBUTION STATEMENT A: Approved for public release: distribution is unlimited

Acknowledgements

- Dr. Börje Andersson Swedish Defense Research Agency
- Daniel Hill CAStLE Research Engineer
- Dr. R. A. Saravanan CAStLE Metallurgist
- Jim Harter AFGROW Lead Engineer
- Alex Litvinov AFGROW Software Engineer

- K Solutions
 - Geometric & Loading Parameter Space
 - [°] Verification
 - Validation
- Fatigue Life Predictions Using New K Solutions
 - [°] Fatigue Life
 - Continuing Damage Scenario
 - > Phase I Life
 - › Crack Size
 - ° Effect of r/t
- Conclusions

Small differences in *K* Solutions yield large cumulative differences in fatigue life

... and large differences in K solutions yield even a larger cumulative difference in fatigue life

Parameter Space

K-Solutions, ≈ 1.0 million CPU Hours

- Geometry
 - Centrally Located Straight Shank Hole
 - $^{\circ} \quad 0.1 \leq r/t \leq 10.0$
 - 0.1, 0.111, 0.125, 0.1428, 0.1667, 0.2,
 0.25, 0.333, 0.5, 0.667, 0.75, 0.8, 1.0,
 1.25, 1.333, 1.5, 1.667 2.0, 3.0, 4.0, 5.0,
 6.0, 7.0, 8.0, 9.0, 10.0 (r/t = 0.5, 1.0)
 - ° Finite Width/Height Plate
 - → r/h = 0.0025
 - → r/b = 0.0025
- Crack Shapes
 - $^{\circ} \quad 0.1 \leq a/c \leq 10.0$
 - > 0.1, 0.111, 0.125, 0.1428, 0.1667, 0.2, 0.25, 0.333, 0.5, 0.667, 0.75, 0.8, 1.0, 1.25, 1.333, 1.5, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0 (a/c = 0.2, 0.5, 0.8, 1.0, 2.0)
 - $^{\circ} \quad 0.1 \leq a/t \leq 0.99$
- Load Conditions
 - Tension
 - ° Bending
 - Pin Loading (Bearing)
- <u>5,672,700</u> solutions

K-Solution Verification

Convergence: Shallow Crack

Convergence: Deep Crack

K-Solution Validation

Marker Load Spectrum

Crack Shape Development

Crack Shape Development

Crack Shape Development

Fatigue Life Predictions Using New K Solutions

Geometry for Assessing Effect on Life $\frac{Small Crack - Thin Sheet}{W = 1.14 in, t = 0.063 in, D = 3/16 in} \\ a_i = 0.01 in, c_i = 0.01 in, a_i/t = 0.2 \\ a_i/c_i = 1.0, r/t = 1.5 \\ TSR = 1.0, BSR = 0.4 \\ \frac{Small Crack - Thick Sheet}{W = 4.53 in, t = 0.25 in, D = \frac{3}{4} in}$

a_i/*c_i* = 1.0, *r*/*t* = 1.5

TSR = 1.0, *BSR* = 0.4 Large Crack – Thin Sheet

W = 1.14 in, t = 0.063 in, D = 3/16 in $a_i = 0.05$ in, $c_i = 0.05$ in, $a_i / t = 0.8$ $a_i / c_i = 1.0$, r/t = 1.5TSR = 1.0, BSR = 0.4

2r $\sigma_{bending}$ σ_{o} $\boldsymbol{a}_{\scriptscriptstyle 1}$ **a**,

Effect on Life – Small Crack, Thin Sheet

Effect on Life – Small Crack, Thick Sheet

Effect on Life – Large Crack, Thin Sheet

 $\sigma_{_{O}}$

Effect on Continuing Damage Scenario Phase I Life

Effect on Continuing Damage Scenario Phase I Crack Length

Effect of *r/t* – Symmetric Corner Cracks

Effect of *r/t* – Single Corner Crack

- Verification
 - *hp*-version FEA + Splitting Scheme = Accurate K-Solutions
- Validation
 - [°] Fatigue life predictions are slightly conservative
- 5,672,700 K solutions for unsymmetric corner cracks at a hole subject to tension, bending, bearing
 - Solutions available in tabular form currently in AFGROW
 - > 75 1.5MB ASCII files
 - Source code for multi-dimensional interpolation also available

- Single vs. Double Cracks
 - ^o Difference always larger for single cracks
- Effect on Fatigue Life
 - Small cracks in thin sheets: 20-50%
 - Small cracks in thick sheets: 25-45%
 - Large cracks in thin sheets: 90-300%
 - Continuing damage scenario: 125-350%
- Effect on Inspections
 - [°] Possibility of initial inspection not early enough in aircraft life
 - Possibility of recurring inspections not occurring as frequently as required
- Effect of *r/t*
 - Significant for large cracks in thin sheets
 - Negligible for small cracks in thick sheets