
Using AFGROW in MatLab

Jimmy Lambert, Alex Litvinov,
LexTech, Inc.

AFGROW Workshop 2019

Problem

• Find a way to run AFGROW prediction within
MATLAB

• Needs the ability to pass parameter values by
reference

• Needs to be able to catch events such as
PredictFinished

• Need to be able to access classes such as
AfgrowRetardationModels

History

• MatLab’s OLE automation server method is the
recommended method for COM

• Afgrow did not work with this method originally,
because MatLab uses late binding, and AFGROW did
not

• The .Net method of using AFGROW within MatLab
worked, but required some extra steps

• Afgrow was updated to be compatible with the
actxserver method

.Net Method

• The .Net Method Can Be Used With All Versions of
AFGROW

• In order to use the .Net method, the user must have a
visual studio developer pack.

• Events can not be handled in this version, meaning
methods like RunPredict are not useful.

• Step-By-Step guide can be found at
https://www.afgrow.net/userarea/default.aspx in the
document “Using MATLAB to Perform a Life Prediction in
AFGROW version prior to 5.3.3”

https://www.afgrow.net/userarea/default.aspx

OLE Automation Server Method

• Can be used with versions of AFGROW after version
5.3.3

• Requires nothing but AFGROW and MatLab

• This method can handle the PredictFinished event

• A step by step guide can be found at the AFGROW
downloads page in the document “Using MATLAB to
Perform a Life Prediction in AFGROW version 5.3.3 or
higher”

.Net COM Example

• Add a .Net Reference to AFGROW

• Create an Afgrow.ApplicationClass object

• Use Either ConstAmplitudeSpectrum or OpenSpectrum to set
the spectrum.

• Set any additional options for the specimen and spectrum

• Call RunPredict or RunFrozPredict to run a prediction.

reference = NET.addAssembly('C:\Program Files\AFGROW\Afgrow.dll');

afgrow = Afgrow.ApplicationClass;

afgrow.ConstAmplitudeSpectrum(0.0)

%Add additional options such as model number, crack length,

% retardation, smf or much more here.

[ret,Cycles,FinalC,finalKc,finalA,finalKa,finalCt,finalKct] =

afgrow.RunFrozPredict()

OLE Automation Server Method
Simple Example

afgrow = actxserver('Afgrow.Application');

afgrow.ConstAmplitudeSpectrum(0.0);

%Add additional options such as model number, crack length,

% retardation, smf or much more here.

[ret,Cycles,FinalC,finalKc,finalA,finalKa,finalCt,finalKct] =

afgrow.RunFrozPredict();

• Create an AFGROW COM object using actxserver

• Use Either ConstAmplitudeSpectrum or OpenSpectrum
to set the spectrum.

• Set any additional options for the specimen and
spectrum

• Call RunPredict or RunFrozPredict to run a
prediction.

OLE Automation Server Method
Events Example

• This example will run a prediction similar to
the previous example

• This example will use the ‘PredictFinished’ and
‘TransitionInfo’ events in order to receive the
data

OLE Automation Server Method
Events Example – Main Script

• This script functions similarly to the actxserver example, but uses events
• ‘registerevent’ is used to register the ‘PredictFinished’ and ‘TransitionInfo’ events

to the corresponding event handler functions.
• The model 1070 (Corner Crack at Edge) , it is a part through crack
• ‘RunPredict’ starts a prediction much like ‘RunFrozPredict’ but asynchronously

%TransitionInfoExample.m

clear;

afgrow = actxserver('Afgrow.Application');

afgrow.Visible = true;

registerevent(afgrow, {'PredictFinished' @HandlePredictFinished});

registerevent(afgrow, {'TransitionInfo' @HandleTransitionInfo});

afgrow.Model = 1070;

afgrow.ConstAmplitudeSpectrum(0.0);

afgrow.RunPredict;

OLE Automation Server Method
Events Example – Event Handler Functions

• The first function handles events for when the crack transition from part-
through to through crack

• The second function handles the event when the prediction is finished.

• Each function should be in its’ own file in the same folder as the script

function HandleTransitionInfo(varargin)

disp("Transition Occurred");

disp(["Passes",varargin{8};"Cycles", varargin{7}]);

end

function HandlePredictFinished(varargin)

disp("Prediction Finished");

disp(["Cycles", varargin{4}]);

end

Example
Running Multiple Predictions Asynchronously

• Will be implemented as a function in MatLab

• Outputs Prediction Results to the Screen

• Run Asynchronously with RunPredict and Events

• Runs Predictions Based on Input Array of Crack Lengths

• Is run with the Signature RunMultiPredict(afgrow,
[.2,.3,.4])

Example
Running Multiple Predictions Asynchronously

function RunMultiPredict(afgrow, inputArr)

global inputs;

global globalAfgrow;

globalAfgrow = afgrow;

inputs = inputArr;

registerevent(afgrow, {'PredictFinished' @PredictFinished_Multi_Handler});

afgrow.Visible = true;

afgrow.Units = 'UnitsEnglish';

afgrow.Model = 'aCenterThrough';

afgrow.SpecimenThickness = 1;

afgrow.ConstAmplitudeSpectrum(0.0);

afgrow.SMF = 10;

afgrow.CrackLengthC = inputArr(1);

afgrow.RunPredict;

end

These variables are made global so the event
handler will have access to them.

inputArr will contain varying initial crack lengths
in this example.

Example
Running Multiple Predictions Asynchronously

function PredictFinished_Multi_Handler(varargin)

global inputs;

global globalAfgrow;

disp(["Initial Crack Length",inputs(1);"Cycles",varargin{4}]);

if size(inputs,2) > 1

inputs(1) = [];

globalAfgrow.CrackLengthC = inputs(1);

globalAfgrow.RunPredict;

end

end
Changes to the model parameters are made in these lines. The

input the was used previously is deleted, then, the crack length is
updated with the next value. Finally, globalAfgrow.RunPredict is

called. This routine is then called recursively with each
PredictFinished event.

Example
Advanced Models

• Will be implemented as a function in MatLab

• Outputs Prediction Results to the Screen

• Run with RunFrozPredict inline

• Runs Predictions Based on Input Array of Crack Lengths

• Is run with the Signature afgrow.RunFrozPredict()

Example
Advanced Models

function [RetVal, Cycles, FinalC, FinalKc] = AdvancedRunFrozPredict(Thickness, HoleOffset, IsPartThrough, CrackLengthC,
CrackLengthA)

afgrow = actxserver('Afgrow.Application');

afgrow.Visible = true;

afgrow.Units = 'UnitsEnglish';

afgrow.Model = 'mAdvanced';

afgrow.AdvancedModel.AddHole("hole1", .5, HoleOffset);

%Continued on next page

In this example we set the model to ‘mAdvanced’
which will allow us to access AFGROW’s Advanced

Model Interface.

After a hole is added to the model, corner
cracks, through cracks, and slots can be

added to it.

Example
Advanced Models

if IsPartThrough

afgrow.AdvancedModel.AddCrackToHole("hole1", 'AfgrowCornerCrack', 'HRight', CrackLengthC, CrackLengthA);

Else

afgrow.AdvancedModel.AddCrackToHole("hole1", 'AfgrowThroughCrack', 'HRight', CrackLengthC);

end

afgrow.AdvancedModel.SetModelProperty('propThickness', Thickness);

afgrow.ConstAmplitudeSpectrum(0.0);

afgrow.SMF = 14;

[RetVal,Cycles,FinalC,FinalKc,~,~,~,~] = afgrow.RunFrozPredict;

End

These lines evaluate the boolean value ‘IsPartThrough’
that is a parameter of the function. Then either a
through crack or a part through crack is added to

“hole1”.

Conclusion

• The .Net method should be used for AFGROW versions
before 5.3.3

• The OLE Automation Server Method should be used
with versions of AFGROW version 5.3.3 or newer

• MatLab version 2019a contains a fix that allows events
such as HandleTransitionInfo to be used

• For more information about using MatLab with
AFGROW, see the My AFGROW page on afgrow.net

