

ENGINEERING What's in a Filled Hole?

Joshua Hodges, Dallen Andrew Hill Engineering

analytical processes / engineered solutions

Dr. Tom Mills APES

September 11, 2019

Agenda

- Summary of test data for filled vs unfilled holes
- How does AFGROW deal with a filled hole?
- □ What does FEA tell us about a filled hole?
- **Continuing damage in a filled hole**
- Secondary cracks and continuing damage
- □ How does interference effect hole fill?
- Residual stress in open vs filled holes
- □ How do we go forward with analytical comparisons?

Test Program 1: Interference Fit Fastener Testing (Steel)

- Purpose was to evaluate reduced IFS for DTA for interference fit fasteners
- > Two geometries (e/D = 2.0, e/D = 1.5)
- Three loading conditions (2 spectra & 1 constant amplitude)
- ➢ Four hole conditions (open, neat fit, 0.002", and 0.004" interference)

Loading Type	Geometry Configuration	Mean Life, Neat Fit to Open (cycles or hours)	Improvement Factor	
Constant Amplitude	#1 (e/D = 2.0) 488,163 / 302,484		1.6	
	#2 (e/D =1.5)	1,130,881 / 276,304	4.1	
Spectrum 1	#1 (e/D = 2.0) 7,749 / 3,516		2.2	
	#2 (e/D =1.5)	8,881 / 3,978	2.2	
Spectrum 2	#1 (e/D = 2.0)	37,331 / 16,479	2.3	
	#2 (e/D =1.5)	40,211 / 15,115	2.7	

[SwRI Project 18-20411 FSIS Testing]

Test Program 1: Interference Fit Fastener Testing (Steel)

AFGROW used to correlate with open hole test from previous slide for Spectrum #1, e/D = 2.0

Source	Mean Life, Neat Fit to Open (hours)	Improvement Factor	
Test Data	7,749 / 3,516	2.2	
AFGROW Filled to Open	3,303 / 2,991	1.1	
AFGROW Filled to Open with Beta Correction	7,630 / 2,991	2.6	

1 Test Program 2: Interference Fit Fastener Testing (Aluminum)

- Purpose was to evaluate reduced IFS for DTA for interference fit fasteners
- One geometry
- One loading condition (1 spectrum)
- Three hole conditions (open, neat fit, 0.0025" interference)

*Note: The neat fit coupons were later found to have 0.02% to 0.3% clearance which would impact results stated here

Loading Type	Mean Life, Neat Fit to Open (hours)	Improvement Factor			
Spectrum 1	3,724 / 3,563	1.05			

[SwRI-18-22334-006]

Test Program 3: Interference Fit Fastener Testing (Aluminum)

- Purpose was to evaluate modeling techniques for interference effects
- One geometry
- One loading condition (1 constant amplitude)
- Two hole conditions in non-Cx baseline (open, 0.4% interference)

Test Data Conclusions

- Test Programs 1 & 2
 - Neat fit and Interference level test specimens difficult to manufacture
 - Interference effectively shut down crack growth completely
 - Interference tests that progressed to fracture had various factors at play
 - > Test Program 1: initial cracks were quite large (through cracks in many cases)
 - Test Program 2: initial batch had holes improperly sized (either clearance or interference that was about half of target)
- Test Program 3*
 - Residual stress redistribution and life predictions at interference fastener holes
 - > 24 specimens for fatigue test and residual stress measurements
 - Open Hole, neat fit, interference fit, CX and non-CX
 - Observations:
 - Interference pin at non-CX hole doubles life over non-CX open hole
 - Interference pin at CX hole outperforms open CX hole by factor of two, but there is scatter and even some overlap.

*Results and experimental design discussed at A-10 summit, Dr. Tom Mills, 7 May 2019

AFGROW & Filled Holes

- AFGROW utilizes equation from Lincoln* to adjust Beta factor
- □ No hole fill capability with advanced model
- □ AFGROW remains linear with negative loads
- Corrections for 'c' and 'a' utilize the same factor:

Correction(*c*, *R*) = 0.969831 + 0.10763
$$\frac{ln(\frac{c}{R} + 0.01)}{ln 10}$$

where c = surface crack length and R = radiusif Correction(c,R) > 1.0 then Correction(c,R) = 1.0 Model Geometry and Dimensions

Geometry | Dimension
Load

Image: Comparison of the strength of t

*Personal Communication, Dr. Lincoln and James Harter

FEA & Filled Holes

❑ StressCheck can model hole fill with:

- Compression springs
- Non-linear multibody contact
- Pressure distribution

□ How do they compare to AFGROW?

Continuing Damage in Filled Holes

- Project looking at multi-crack growth with continuing damage
- Open hole: Primary crack interacts with the secondary crack
- Filled hole: Secondary crack is not affected by primary crack

Shake Down of Residual Stress in an Open Hole

□ What does cycling an open hole CX coupon do?

APES, INC. Analytical processes / engineered solutions

Residual Stress Comparison

- Original stresses ("DNormed" -- from a residual stress database) were deeply compressive.
- The new pre-cycled specimens have vastly different residual stresses

Swift, Taylor. (2014), "Shake It Off"

11

analytical processes / engineered solutions

Shake Down of Residual Stress in an Open Hole

What effect does this have on fatigue life and crack shape?

Swift, Taylor. (2014), "Shake It Off"

1

Residual Stress in Filled Holes from Legacy A/C

□ What has a decade of service life done to the RS of a filled hole?

Level I Analysis - Comparison Results (A-10) Section R3.1P

New Manufacture Specimens

Sample ID	Midthickness 0.125*rad (ksi)	Midthickness 0.25*rad (ksi)	Midthickness 0.5*rad (ksi)	Midthickness 0.75*rad (ksi)	Depth at crossover (midthickness) (in)	Point Value of Entrance (ksi)	Avg RS in 0.05" Radius Entrance (ksi)	Point Value CSK Knee (ksi)	Avg RS in 0.05" Radius CSK knee (ksi)
Mean	-47.15	-31.04	-12.29	-2.60	0.13	-51.30	-34.67	-77.92	-44.59
Stdev	5.17	4.10	2.71	2.99	0.04	21.61	6.68	16.67	10.37
Mean	-52.82	-32.95	-10.82	-0.19	0.10	-49.72	-31.57	-98.82	-55.33
Stdev	3.68	3.91	3.91	3.65	0.02	21.46	3.05	14.72	2.64
Residuals (Td-NM)	5.68	1.91	-1.46	-2.42	0.03	-1.58	-3.09	20.90	10.74
P Value	0.00	0.13	0.15	0.05	0.02	0.43	0.08	0.00	0.00
Significant	Yes	No	No	Yes	Yes	No	No	Yes	Yes

Swift, Taylor. (2014), "Shake It Off"

📞 HILL

ENGINEERING

© 2018 Hill Engineering, LLC

hill-engineering.com

Advanced Fatigue Analysis and Filled Holes

- Current methodology solves for one load case and assumes stress intensities are linear
- □ Additionally, when interference is applied K's at zero applied remote stress are not positive, not taken into account in BAMF/CPT

Future of BAMF/CPAT Filled Holes

- BAMF and AFGROW are currently developing a way to deal with this issue
 - Work is being accomplished to pass a table of K's and stresses that will allow interpolation to occur between those points
 - With enough solutions, hole propping can be modeled correctly in a BAMF analysis

StressCheck (CPAT) and APES have been working on methods to handle interference fit

- Beta correction tables in AFGROW can be used to capture hole propping from hole fill
- Does not capture "R shift" associated with interference at min load
- CPAT interactive K-solver being used, but it is time consuming
- Attempts to superimpose these models with residual stress (CX holes) has encountered difficulty

Utilizing Contact/Non-linear solutions and solving multiple load cases is time intensive

Moving Forward

- Determining a way to handle neat fit and interference fit in an AFGROW type solution would be ideal
- □ Additional validation work of AFGROW / Lincoln neat fit correction
- □ What is the best way to approach this?

